Popular Careers

Career Development

Career development resources for aspiring professionals.

Career Change Center

Career change guides, tutorials and resources for professionals in transition.

Job Search Resources

Job search resources, websites, guides and directories for job seekers.


Career and Education Opportunities for Electronics Engineers in Madison, Wisconsin

Electronics engineer career and educational opportunities abound in Madison, Wisconsin. There are currently 1,760 working electronics engineers in Wisconsin; this should grow 2% to 1,800 working electronics engineers in the state by 2016. This is better than the national trend for electronics engineers, which sees this job pool growing by about 0.3% over the next eight years. Electronics engineers generally research, design, and test electronic components and systems for commercial, industrial, or scientific use utilizing knowledge of electronic theory and materials properties.

Income for electronics engineers is about $34 hourly or $72,580 annually on average in Wisconsin. Nationally, their income is about $41 per hour or $86,370 yearly. Compared with people working in the overall category of Engineering, people working as electronics engineers in Wisconsin earn more. They earn more than people working in the overall category of Engineering nationally. Jobs in this field include: engineer, outside plant engineer, and automotive power electronics engineer.

The Madison area is home to thirteen schools of higher education, including two within twenty-five miles of Madison where you can get a degree as an electronics engineer. The most common level of education for electronics engineers is a Bachelor's degree. You can expect to spend about four years studying to be an electronics engineer if you already have a high school diploma.

CAREER DESCRIPTION: Electronics Engineer

In general, electronics engineers research, design, and test electronic components and systems for commercial, industrial, or scientific use utilizing knowledge of electronic theory and materials properties. They also design electronic circuits and components for use in fields such as telecommunications, aerospace guidance and propulsion control, acoustics, or instruments and controls.

Electronics engineers talk with engineers, customers, vendors or others to consider existing and potential engineering projects or products. They also evaluate operational systems, prototypes and proposals and recommend repair or layout modifications, on the basis of factors such as environment and system capabilities. Equally important, electronics engineers have to direct and schedule efforts concerned with manufacture and modification of electronic equipment and systems. They are often called upon to design and perform operational, maintenance, and testing processes for electronic products and systems. Finally, electronics engineers furnish technical support and instruction to staff or customers regarding equipment standards, assisting with specific, difficult in-service engineering.

Every day, electronics engineers are expected to be able to articulate ideas and problems. They need to listen to and understand others in meetings. It is also important that they read and understand documents and reports.

It is important for electronics engineers to decide on material and equipment needs and order supplies. They are often called upon to operate computer-assisted engineering and layout software and apparatus to perform engineering tasks. They also inspect electronic equipment and systems to insure conformance to given requirements and applicable codes and regulations. They are sometimes expected to ready engineering sketches and requirements for construction and installation of equipment and systems. Somewhat less frequently, electronics engineers are also expected to ready documentation containing data such as confidential descriptions and specifications of proprietary hardware and software, product development and introduction schedules, product costs, and data related to product performance weaknesses.

and formulate and design applications and modifications for electronic properties used in components and systems, to further optimize technical performance. And finally, they sometimes have to design and perform operational, maintenance, and testing processes for electronic products and systems.

Like many other jobs, electronics engineers must be thorough and dependable and be reliable.

Similar jobs with educational opportunities in Madison include:

  • Agricultural Engineer. Apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products.
  • Biomedical Engineer. Apply knowledge of engineering, biology, and biomechanical principles to the design, development, and evaluation of biological and health systems and products, such as artificial organs, prostheses, instrumentation, medical information systems, and health management and care delivery systems.
  • Chemical Engineer. Design chemical plant equipment and devise processes for manufacturing chemicals and products, such as gasoline, synthetic rubber, and pulp, by applying principles and technology of chemistry, physics, and engineering.
  • Civil Engineer. Perform engineering duties in planning, designing, and overseeing construction and maintenance of building structures, and facilities, such as roads, railroads, airports, bridges, harbors, channels, dams, irrigation projects, pipelines, power plants, water and sewage systems, and waste disposal units. Includes architectural, structural, and geo-technical engineers.
  • Computer Engineer. Research, design, and test computer or computer-related equipment for commercial, industrial, or scientific use. May supervise the manufacturing and installation of computer or computer-related equipment and components.
  • Electrical Engineer. Design, develop, or supervise the manufacturing and installation of electrical equipment, components, or systems for commercial, industrial, or scientific use.
  • Fire Prevention Research Engineer. Research causes of fires, determine fire protection methods, and design or recommend materials or equipment such as structural components or fire-detection equipment to assist organizations in safeguarding life and property against fire, explosion, and related hazards.
  • Health, Safety, and Environment Manager. Plan, implement, and coordinate safety programs, requiring application of engineering principles and technology, to prevent or correct unsafe environmental working conditions.
  • Industrial Engineer. Design, develop, and evaluate integrated systems for managing industrial production processes including human work factors, quality control, inventory control, logistics and material flow, cost analysis, and production coordination.
  • Industrial Engineering Technician. Apply engineering theory and principles to problems of industrial layout or manufacturing production, usually under the direction of engineering staff. May study and record time, motion, and speed involved in performance of production, maintenance, and other worker operations for such purposes as establishing standard production rates or improving efficiency.
  • Manufacturing Engineer. Apply knowledge of materials and engineering theory and methods to design, integrate, and improve manufacturing systems or related processes. May work with commercial or industrial designers to refine product designs to increase producibility and decrease costs.
  • Materials Engineer. Evaluate materials and develop machinery and processes to manufacture materials for use in products that must meet specialized design and performance specifications. Develop new uses for known materials. Includes those working with composite materials or specializing in one type of material, such as graphite, metal and metal alloys, ceramics and glass, plastics and polymers, and naturally occurring materials.
  • Mechanical Engineer. Perform engineering duties in planning and designing tools, engines, and other mechanically functioning equipment. Oversee installation, operation, and repair of such equipment as centralized heat, gas, and steam systems.
  • Nuclear Engineer. Conduct research on nuclear engineering problems or apply principles and theory of nuclear science to problems concerned with release, control, and utilization of nuclear energy and nuclear waste disposal.
  • Product Safety Engineer. Develop and conduct tests to evaluate product safety levels and recommend measures to reduce or eliminate hazards.

EDUCATIONAL OPPORTUNITIES: Electronics Engineer Training

Herzing College - Madison, WI

Herzing College, 5218 E. Terrace Dr., Madison, WI 53718. Herzing College is a small college located in Madison, Wisconsin. It is a private for-profit school with primarily 4-year or above programs and has 2,085 students. Herzing College has an associate's degree program in Electrical, Electronics and Communications Engineering which graduated eleven students in 2008.

University of Wisconsin-Madison - Madison, WI

University of Wisconsin-Madison, 500 Lincoln Dr, Madison, WI 53706-1380. University of Wisconsin-Madison is a large university located in Madison, Wisconsin. It is a public school with primarily 4-year or above programs. It has 41,581 students and an admission rate of 63%. University of Wisconsin-Madison has bachelor's degree, master's degree, and doctor's degree programs in Electrical, Electronics and Communications Engineering which graduated three, sixty-eight, and thirty-three students respectively in 2008.

CERTIFICATIONS

Planning and Scheduling Professional: The PSP certification is to recognize specialists who meet a demanding set of planning and scheduling criteria by a rigorous examination, experience, education and ethical qualificaion.

For more information, see the AACE International (Association for the Advancement of Cost Engineering through total cost management) website.

Geometric Dimensioning & Tolerancing Professional - Technologist: ASME GDTP Certification provides the means to recognize proficiency in the understanding and application of the geometric dimensioning and tolerancing (GD&T) principles expressed in the ASME Y14.

For more information, see the American Society of Mechanical Engineers International website.

CompTIA Radio Frequency Identification (RFID+) Certification: CompTIA Radio Frequency Identification (RFID+) certification validates the knowledge and skills of professionals who work with RFID technology.

For more information, see the Computing Technology Industry Association (CompTIA) website.

RADAR Electronics Technician: Radar electronics technicians are expected to obtain knowledge of radar basics and concepts which are then applicable to all the.

For more information, see the ETA International website.

Associate Certified Electronics Technician: Knowledge areas include: Electrical Theory, Electronic Components, Soldering-Desoldering & Tools, Block Diagrams - Schematics - Wiring Diagrams, Cabling, Power Supplies, test Equipment & Measurements, Safety Precautions, Mathematics & Formulas, Radio Communication Technology, Electronic Circuits: Series & Parallel, Amplifiers, Interfacing of Electronics Products, Digital Concepts & Circuitry, Computer Electronics, Computer Applications, Audio & Video Systems, Optical Electronics, Telecommunications Basics, Technician Work Procedures.

For more information, see the ETA International website.

IPC-A-600 Acceptability of Printed Circuit Boards: The IPC-A-600 Training and Certification Program helps all segments of the electronics interconnection industry improve their understanding of printed board quality issues; greatly enhances communication between PCB manufacturers, their suppliers and their customers; and provides a valuable portable credential to industry professionals as well as recognition for their companies.

For more information, see the IPC (Institute of Interconnecting and Packaging Electronic Circuits) website.

Electron Microscopy Technologist: The Microscopy Society of America (MSA), the world's largest professional association of microscopists, provides the only certification of technologists in biological transmission electron microscopy available in the Americas.

For more information, see the Microscopy Society of America website.

Junior Telecommunications Engineer: Telecommunications certification is applicable to professionals involved in the science and practice of communications by electromagnetic means.

For more information, see the National Association of Radio and Telecommunications Engineers, Inc. website.

LICENSES

DESIGNER OF ENGINEERING SYSTEMS - Electrical

Licensing agency: Dept of Regulation & Licensing
Address: Direct Licensing & Real Estate Bureau, 1400 E. Washington Ave., P.O. Box 8935, Madison, WI 53708-8935

Phone: (608) 266-5511
Website: Dept of Regulation & Licensing Direct Licensing & Real Estate Bureau

LOCATION INFORMATION: Madison, Wisconsin

Madison, Wisconsin
Madison, Wisconsin photo by Dori

Madison is situated in Dane County, Wisconsin. It has a population of over 231,916, which has grown by 11.5% in the past ten years. The cost of living index in Madison, 86, is well below the national average. New single-family homes in Madison are valued at $243,800 on average, which is near the state average. In 2008, one hundred forty-eight new homes were constructed in Madison, down from three hundred seventy-four the previous year.

The top three industries for women in Madison are educational services, health care, and finance and insurance. For men, it is educational services, professional, scientific, and technical services, and accommodation and food services. The average travel time to work is about 18 minutes. More than 48.2% of Madison residents have a bachelor's degree, which is higher than the state average. The percentage of residents with a graduate degree, 20.9%, is higher than the state average.

The unemployment rate in Madison is 5.2%, which is less than Wisconsin's average of 7.7%.

The percentage of Madison residents that are affiliated with a religious congregation, 52.5%, is more than the national average but less than the state average. Gates of Heaven Synagogue, Abundant Life Church and Grace Episcopal Church are some of the churches located in Madison. The most common religious groups are the Catholic Church, the Evangelical Lutheran Church in America and the United Methodist Church.

Madison is home to the Allen Centennial Gardens and the Annie C Stewart Memorial Fountain as well as Bordner Park and Brigham Park. Shopping centers in the area include Brookwood Village Shopping Center, Whitney Square Shopping Center and Walnut Grove Shopping Center. Visitors to Madison can choose from Comfort Inn Madison, Howard Johnson-Plaza Hotel and Country Inn Sts Madison for temporary stays in the area.