Popular Careers

Career Development

Career development resources for aspiring professionals.

Career Change Center

Career change guides, tutorials and resources for professionals in transition.

Job Search Resources

Job search resources, websites, guides and directories for job seekers.


Career and Education Opportunities for Biomedical Engineers in Grand Prairie, Texas

Biomedical engineer career and educational opportunities abound in Grand Prairie, Texas. There are currently 480 working biomedical engineers in Texas; this should grow by 33% to about 630 working biomedical engineers in the state by 2016. This is not quite as good as the nation as a whole, where employment opportunities for biomedical engineers are expected to grow by about 72.0%. In general, biomedical engineers apply knowledge of engineering, biology, and biomechanical principles to the design, development, and evaluation of biological and health systems and products, such as artificial organs, prostheses, instrumentation, medical information systems, and health management and care delivery systems.

A person working as a biomedical engineer can expect to earn about $28 hourly or $58,300 annually on average in Texas and about $37 per hour or $77,400 per year on average in the U.S. as a whole. Biomedical engineers earn less than people working in the category of Engineering generally in Texas and less than people in the Engineering category nationally. People working as biomedical engineers can fill a number of jobs, such as: orthopedic designer, biomedical equipment technician , and certified prosthetist.

The Grand Prairie area is home to seventy-four schools of higher education, including one within twenty-five miles of Grand Prairie where you can get a degree as a biomedical engineer. The most common level of education for biomedical engineers is a Bachelor's degree. It will take about four years to learn to be a biomedical engineer if you already have a high school diploma.

CAREER DESCRIPTION: Biomedical Engineer

Biomedical Engineer video from the State of New Jersey Dept. of Labor and Workforce Development

In general, biomedical engineers apply knowledge of engineering, biology, and biomechanical principles to the design, development, and evaluation of biological and health systems and products, such as artificial organs, prostheses, instrumentation, medical information systems, and health management and care delivery systems.

Every day, biomedical engineers are expected to be able to think through problems and come up with general rules. They need to articulate ideas and problems. It is also important that they listen to and understand others in meetings.

It is important for biomedical engineers to advise hospital administrators on the planning and use of medical equipment. They are often called upon to set up and/or repair biomedical equipment. They also advise and help in the application of instrumentation in clinical environments. They are sometimes expected to layout and deliver technology to help people with disabilities. Somewhat less frequently, biomedical engineers are also expected to teach biomedical engineering or disseminate knowledge about field through writing or consulting.

Biomedical engineers sometimes are asked to layout and develop medical diagnostic and clinical instrumentation, equipment, and procedures, using the principles of engineering and biobehavioral sciences. They also have to be able to design models or computer simulations of human biobehavioral systems to obtain data for measuring or controlling life processes and research new materials to be used for products. And finally, they sometimes have to conduct research, along with life scientists and medical scientists, on the engineering aspects of the biological systems of humans and animals.

Like many other jobs, biomedical engineers must be reliable and be thorough and dependable.

Similar jobs with educational opportunities in Grand Prairie include:

  • Civil Engineer. Perform engineering duties in planning, designing, and overseeing construction and maintenance of building structures, and facilities, such as roads, railroads, airports, bridges, harbors, channels, dams, irrigation projects, pipelines, power plants, water and sewage systems, and waste disposal units. Includes architectural, structural, and geo-technical engineers.
  • Computer Engineer. Research, design, and test computer or computer-related equipment for commercial, industrial, or scientific use. May supervise the manufacturing and installation of computer or computer-related equipment and components.
  • Electrical Engineer. Design, develop, or supervise the manufacturing and installation of electrical equipment, components, or systems for commercial, industrial, or scientific use.
  • Electronics Engineer. Research, design, and test electronic components and systems for commercial, industrial, or scientific use utilizing knowledge of electronic theory and materials properties. Design electronic circuits and components for use in fields such as telecommunications, aerospace guidance and propulsion control, acoustics, or instruments and controls.
  • Fire Prevention Research Engineer. Research causes of fires, determine fire protection methods, and design or recommend materials or equipment such as structural components or fire-detection equipment to assist organizations in safeguarding life and property against fire, explosion, and related hazards.
  • Health, Safety, and Environment Manager. Plan, implement, and coordinate safety programs, requiring application of engineering principles and technology, to prevent or correct unsafe environmental working conditions.
  • Manufacturing Engineer. Apply knowledge of materials and engineering theory and methods to design, integrate, and improve manufacturing systems or related processes. May work with commercial or industrial designers to refine product designs to increase producibility and decrease costs.
  • Materials Engineer. Evaluate materials and develop machinery and processes to manufacture materials for use in products that must meet specialized design and performance specifications. Develop new uses for known materials. Includes those working with composite materials or specializing in one type of material, such as graphite, metal and metal alloys, ceramics and glass, plastics and polymers, and naturally occurring materials.
  • Mechanical Engineer. Perform engineering duties in planning and designing tools, engines, and other mechanically functioning equipment. Oversee installation, operation, and repair of such equipment as centralized heat, gas, and steam systems.
  • Product Safety Engineer. Develop and conduct tests to evaluate product safety levels and recommend measures to reduce or eliminate hazards.

EDUCATIONAL OPPORTUNITIES: Biomedical Engineer Training

University of Texas Southwestern Medical Center at Dallas - Dallas, TX

University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-9096. University of Texas Southwestern Medical Center at Dallas is a small university located in Dallas, Texas. It is a public school with primarily 4-year or above programs and has 2,461 students. University of Texas Southwestern Medical Center at Dallas has a master's degree and a doctor's degree program in Biomedical/Medical Engineering which graduated two and three students respectively in 2008.

CERTIFICATIONS

Geometric Dimensioning & Tolerancing Professional - Technologist: ASME GDTP Certification provides the means to recognize proficiency in the understanding and application of the geometric dimensioning and tolerancing (GD&T) principles expressed in the ASME Y14.

For more information, see the American Society of Mechanical Engineers International website.

Certified Water Technologist: The Certified Water Technologist (CWT) program represents the highest professional credential in the industrial and commercial water treatment field.

For more information, see the Association of Water Technologies website.

LOCATION INFORMATION: Grand Prairie, Texas

Grand Prairie, Texas
Grand Prairie, Texas photo by Lothar1976

Grand Prairie is situated in Dallas County, Texas. It has a population of over 160,641, which has grown by 26.1% over the last ten years. The cost of living index in Grand Prairie, 90, is well below the national average. New single-family homes in Grand Prairie are priced at $174,200 on average, which is near the state average. In 2008, five hundred forty-four new homes were built in Grand Prairie, down from 1,058 the previous year.

The top three industries for women in Grand Prairie are educational services, health care, and finance and insurance. For men, it is construction, transportation equipment, and professional, scientific, and technical services. The average commute to work is about 27 minutes. More than 19.3% of Grand Prairie residents have a bachelor's degree, which is lower than the state average. The percentage of residents with a graduate degree, 5.0%, is lower than the state average.

The unemployment rate in Grand Prairie is 8.7%, which is greater than Texas's average of 8.1%.

The percentage of Grand Prairie residents that are affiliated with a religious congregation, 55.1%, is more than the national average but less than the state average. Abundant Life Assembly of God Church, Celestial Church of Christ and Saint Andrew Church are some of the churches located in Grand Prairie. The largest religious groups are the Catholic Church, the Southern Baptist Convention and the United Methodist Church.

Grand Prairie is home to Kennedy Middle School Football Stadium and Hendrix Park. Visitors to Grand Prairie can choose from Blue Sky Hospitality, Amerisuites and Comfort Inn for temporary stays in the area.