Popular Careers

Career Development

Career development resources for aspiring professionals.

Career Change Center

Career change guides, tutorials and resources for professionals in transition.

Job Search Resources

Job search resources, websites, guides and directories for job seekers.

Career and Education Opportunities for Mechanical Engineers in Arlington, Texas

If you want to be a mechanical engineer, the Arlington, Texas area offers many opportunities both for education and employment. Currently, 15,970 people work as mechanical engineers in Texas. This is expected to grow by 18% to about 18,870 people by 2016. This is better than the nation as a whole, where employment opportunities for mechanical engineers are expected to grow by about 6.0%. Mechanical engineers generally perform engineering duties in planning and designing tools, engines, and other mechanically functioning equipment.

Mechanical engineers earn approximately $39 hourly or $81,230 per year on average in Texas. Nationally they average about $36 per hour or $74,920 annually. Compared with people working in the overall category of Engineering, people working as mechanical engineers in Texas earn less. They earn less than people working in the overall category of Engineering nationally. People working as mechanical engineers can fill a number of jobs, such as: car designer, weapons engineer, and heating engineer.

The Arlington area is home to eighty-seven schools of higher education, including two within twenty-five miles of Arlington where you can get a degree as a mechanical engineer. Given that the most common education level for mechanical engineers is a Bachelor's degree, you can expect to spend about four years studying to be a mechanical engineer if you already have a high school diploma.

CAREER DESCRIPTION: Mechanical Engineer

Mechanical Engineer video from the State of New Jersey Dept. of Labor and Workforce Development

In general, mechanical engineers perform engineering duties in planning and designing tools, engines, and other mechanically functioning equipment. They also oversee installation, operation, and repair of such equipment as centralized heat, gas, and steam systems.

Mechanical engineers read and interpret blueprints, technical drawings and computer-generated reports. They also design and test models of alternate designs and processing methods to gauge feasibility, operating condition effects, possible new applications and necessity of modification. Equally important, mechanical engineers have to conduct research that tests and analyzes the feasibility, layout, operation and effectiveness of equipment, components and systems. Finally, mechanical engineers specify system components or direct modification of products to insure conformance with engineering layout and performance specifications.

Every day, mechanical engineers are expected to be able to think through problems and come up with general rules. They need to listen to and understand others in meetings. It is also important that they read and understand documents and reports.

It is important for mechanical engineers to talk with engineers and other personnel to execute operating procedures, resolve system malfunctions, and furnish technical data. They are often called upon to recommend layout modifications to remove machine or system malfunctions. They also research and maintain mechanical products, equipment, systems and processes to fit requirements, applying knowledge of engineering principles. They are sometimes expected to assist drafters in developing the structural layout of products using drafting tools or computer-assisted layout (CAD) or drafting equipment and software. Somewhat less frequently, mechanical engineers are also expected to estimate costs and submit bids for engineering or extraction projects, and ready contract documents.

Mechanical engineers sometimes are asked to layout test control apparatus and equipment and develop processes for testing products. They also have to be able to research and analyze customer layout proposals and other data to review the feasibility and maintenance requirements of designs or applications and solicit new business and furnish technical customer service. And finally, they sometimes have to solicit new business and furnish technical customer service.

Like many other jobs, mechanical engineers must be thorough and dependable and be able to absorb the factors involved and a problem and provide a well thought out solution.

Similar jobs with educational opportunities in Arlington include:

  • Aerodynamics Engineer. Perform a variety of engineering work in designing, constructing, and testing aircraft, missiles, and spacecraft. May conduct basic and applied research to evaluate adaptability of materials and equipment to aircraft design and manufacture. May recommend improvements in testing equipment and techniques.
  • Architect. Plan and design structures, such as private residences, office buildings, and other structural property.
  • Architectural Drafter. Prepare detailed drawings of architectural designs and plans for buildings and structures according to specifications provided by architect.
  • Biomedical Engineer. Apply knowledge of engineering, biology, and biomechanical principles to the design, development, and evaluation of biological and health systems and products, such as artificial organs, prostheses, instrumentation, medical information systems, and health management and care delivery systems.
  • Civil Draftsman. Prepare drawings and topographical and relief maps used in civil engineering projects, such as highways, bridges, pipelines, flood control projects, and water and sewerage control systems.
  • Civil Engineer. Perform engineering duties in planning, designing, and overseeing construction and maintenance of building structures, and facilities, such as roads, railroads, airports, bridges, harbors, channels, dams, irrigation projects, pipelines, power plants, water and sewage systems, and waste disposal units. Includes architectural, structural, and geo-technical engineers.
  • Civil Engineering Technician. Apply theory and principles of civil engineering in planning, designing, and overseeing construction and maintenance of structures and facilities under the direction of engineering staff or physical scientists.
  • Computer Engineer. Research, design, and test computer or computer-related equipment for commercial, industrial, or scientific use. May supervise the manufacturing and installation of computer or computer-related equipment and components.
  • Electrical Engineer. Design, develop, or supervise the manufacturing and installation of electrical equipment, components, or systems for commercial, industrial, or scientific use.
  • Electronics Engineer. Research, design, and test electronic components and systems for commercial, industrial, or scientific use utilizing knowledge of electronic theory and materials properties. Design electronic circuits and components for use in fields such as telecommunications, aerospace guidance and propulsion control, acoustics, or instruments and controls.
  • Electronics Engineering Technician. Lay out, build, and modify developmental and production electronic components, parts, and systems, such as computer equipment, missile control instrumentation, electron tubes, and machine tool numerical controls, applying principles and theories of electronics, electrical circuitry, engineering mathematics, electronic and electrical testing, and physics. Usually work under direction of engineering staff.
  • Equipment Engineering Technician. Apply electrical theory and related knowledge to test and modify developmental or operational electrical machinery and electrical control equipment and circuitry in industrial or commercial plants and laboratories. Usually work under direction of engineering staff.
  • Fire Prevention Research Engineer. Research causes of fires, determine fire protection methods, and design or recommend materials or equipment such as structural components or fire-detection equipment to assist organizations in safeguarding life and property against fire, explosion, and related hazards.
  • Health, Safety, and Environment Manager. Plan, implement, and coordinate safety programs, requiring application of engineering principles and technology, to prevent or correct unsafe environmental working conditions.
  • Industrial Engineer. Design, develop, and evaluate integrated systems for managing industrial production processes including human work factors, quality control, inventory control, logistics and material flow, cost analysis, and production coordination.
  • Manufacturing Engineer. Apply knowledge of materials and engineering theory and methods to design, integrate, and improve manufacturing systems or related processes. May work with commercial or industrial designers to refine product designs to increase producibility and decrease costs.
  • Materials Engineer. Evaluate materials and develop machinery and processes to manufacture materials for use in products that must meet specialized design and performance specifications. Develop new uses for known materials. Includes those working with composite materials or specializing in one type of material, such as graphite, metal and metal alloys, ceramics and glass, plastics and polymers, and naturally occurring materials.
  • Product Safety Engineer. Develop and conduct tests to evaluate product safety levels and recommend measures to reduce or eliminate hazards.

EDUCATIONAL OPPORTUNITIES: Mechanical Engineer Training

The University of Texas at Arlington - Arlington, TX

The University of Texas at Arlington, 701 S. Nedderman Dr., Arlington, TX 76013. The University of Texas at Arlington is a large university located in Arlington, Texas. It is a public school with primarily 4-year or above programs. It has 25,070 students and an admission rate of 56%. The University of Texas at Arlington has bachelor's degree, master's degree, and doctor's degree programs in Mechanical Engineering which graduated eighty-two, eighteen, and six students respectively in 2008.

Southern Methodist University - Dallas, TX

Southern Methodist University, 6425 Boaz St, Dallas, TX 75275-0221. Southern Methodist University is a large university located in Dallas, Texas. It is a private not-for-profit school with primarily 4-year or above programs. It has 10,965 students and an admission rate of 50%. Southern Methodist University has bachelor's degree, master's degree, and doctor's degree programs in Mechanical Engineering which graduated two, eighteen, and three students respectively in 2008.


Planning and Scheduling Professional: The PSP certification is to recognize specialists who meet a demanding set of planning and scheduling criteria by a rigorous examination, experience, education and ethical qualificaion.

For more information, see the AACE International (Association for the Advancement of Cost Engineering through total cost management) website.

Geometric Dimensioning & Tolerancing Professional - Technologist: ASME GDTP Certification provides the means to recognize proficiency in the understanding and application of the geometric dimensioning and tolerancing (GD&T) principles expressed in the ASME Y14.

For more information, see the American Society of Mechanical Engineers International website.

Certified in Plumbing Design: The Certified in Plumbing Design (CPD) program is an international certification program for engineers and designers of plumbing systems.

For more information, see the American Society of Plumbing Engineers website.

Certified Associate in Materials Handling: MHMS is proud to offer a professional certification program for its members.

For more information, see the Materials Handling and Management Society website.

PV Installer Certification: The target candidate for NABCEP certification is the person responsible for the system installation (e.

For more information, see the North American Board of Certified Energy Practitioners website.


Arlington, Texas
Arlington, Texas photo by Alienevil

Arlington is located in Tarrant County, Texas. It has a population of over 374,417, which has grown by 12.4% in the past ten years. The cost of living index in Arlington, 89, is well below the national average. New single-family homes in Arlington are priced at $154,300 on average, which is well below the state average. In 2008, four hundred twenty-six new homes were constructed in Arlington, down from eight hundred twelve the previous year.

The three most popular industries for women in Arlington are educational services, health care, and finance and insurance. For men, it is construction, accommodation and food services, and administrative and support and waste management services. The average travel time to work is about 27 minutes. More than 30.4% of Arlington residents have a bachelor's degree, which is higher than the state average. The percentage of residents with a graduate degree, 8.8%, is higher than the state average.

The unemployment rate in Arlington is 7.5%, which is less than Texas's average of 8.1%.

The percentage of Arlington residents that are affiliated with a religious congregation, 52.5%, is more than the national average but less than the state average. Advent Lutheran Church, Pleasantview Baptist Church and Central Assembly of God Church are some of the churches located in Arlington. The largest religious groups are the Southern Baptist Convention, the Catholic Church and the United Methodist Church.

Arlington is home to the Festival Marketplace and the The Parks at Arlington as well as Arlington Tennis Center - University of Texas and Doug Russel Park. Visitors to Arlington can choose from Budget Host International, Baymont Inns & Suites and Candlewood Suites for temporary stays in the area.