Popular Careers

Career Development

Career development resources for aspiring professionals.

Career Change Center

Career change guides, tutorials and resources for professionals in transition.

Job Search Resources

Job search resources, websites, guides and directories for job seekers.


Career and Education Opportunities for Industrial Engineers in St. Paul, Minnesota

Industrial engineers can find both educational opportunities and jobs in the St. Paul, Minnesota area. There are currently 6,380 jobs for industrial engineers in Minnesota and this is projected to grow 23% to about 7,860 jobs by 2016. This is better than the nation as a whole, where employment opportunities for industrial engineers are expected to grow by about 14.2%. In general, industrial engineers design, develop, and evaluate integrated systems for managing industrial production processes including human work factors, quality control, inventory control, logistics and material flow, cost analysis, and production coordination.

Income for industrial engineers is about $36 per hour or $74,940 annually on average in Minnesota. Nationally, their income is about $35 per hour or $73,820 annually. Earnings for industrial engineers are not quite as good as earnings in the general category of Engineering in Minnesota and not quite as good as general Engineering category earnings nationally. Industrial engineers work in a variety of jobs, including: quality control specialist, automation engineer, and supply chain analyst.

There is one school within twenty-five miles of St. Paul where you can study to be an industrial engineer, among seventy-seven schools of higher education total in the St. Paul area. Given that the most common education level for industrial engineers is a Bachelor's degree, you can expect to spend about four years training to become an industrial engineer if you already have a high school diploma.

CAREER DESCRIPTION: Industrial Engineer

Industrial Engineer video from the State of New Jersey Dept. of Labor and Workforce Development

In general, industrial engineers design, develop, and evaluate integrated systems for managing industrial production processes including human work factors, quality control, inventory control, logistics and material flow, cost analysis, and production coordination.

Industrial engineers recommend methods for improving utilization of personnel and utilities. They also talk with vendors and management personnel regarding purchases and project status. Equally important, industrial engineers have to design manufacturing methods, labor utilization standards, and cost analysis systems to promote efficient staff and facility utilization. They are often called upon to estimate production costs and effects of product layout changes for management review and control. They are expected to communicate with management and user personnel to evolve production and layout standards. Finally, industrial engineers direct quality control objectives and efforts to deal with production problems, maximize product reliability, and minimize cost.

Every day, industrial engineers are expected to be able to think through problems and come up with general rules. They need to prioritize information for further consideration. It is also important that they articulate ideas and problems.

It is important for industrial engineers to apply statistical methods and perform mathematical calculations to establish manufacturing processes and production standards. They are often called upon to analyze statistical data and product specifications to establish standards and establish quality and reliability objectives of finished product. They also complete production reports and material, tool, and equipment lists. They are sometimes expected to record or oversee recording of data to insure currency of engineering drawings and documentation of production problems. Somewhat less frequently, industrial engineers are also expected to evaluate precision and precision of production and testing equipment and engineering drawings to formulate corrective action plan.

Industrial engineers sometimes are asked to draft and design layouts of equipment and workspaces to illustrate maximum efficiency using drafting tools and computers. They also have to be able to formulate and establish sequence of operations to fabricate and assemble parts or products and to promote efficient utilization and regulate and alter workflow schedules in line with established manufacturing sequences and lead times to expedite production operations. And finally, they sometimes have to schedule deliveries on the basis of production forecasts, material substitutions, storage and handling facilities, and maintenance requirements.

Like many other jobs, industrial engineers must be thorough and dependable and be able to absorb the factors involved and a problem and provide a well thought out solution.

Similar jobs with educational opportunities in St. Paul include:

  • Aerodynamics Engineer. Perform a variety of engineering work in designing, constructing, and testing aircraft, missiles, and spacecraft. May conduct basic and applied research to evaluate adaptability of materials and equipment to aircraft design and manufacture. May recommend improvements in testing equipment and techniques.
  • Agricultural Engineer. Apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products.
  • Biomedical Engineer. Apply knowledge of engineering, biology, and biomechanical principles to the design, development, and evaluation of biological and health systems and products, such as artificial organs, prostheses, instrumentation, medical information systems, and health management and care delivery systems.
  • Chemical Engineer. Design chemical plant equipment and devise processes for manufacturing chemicals and products, such as gasoline, synthetic rubber, and pulp, by applying principles and technology of chemistry, physics, and engineering.
  • Civil Engineer. Perform engineering duties in planning, designing, and overseeing construction and maintenance of building structures, and facilities, such as roads, railroads, airports, bridges, harbors, channels, dams, irrigation projects, pipelines, power plants, water and sewage systems, and waste disposal units. Includes architectural, structural, and geo-technical engineers.
  • Computer Engineer. Research, design, and test computer or computer-related equipment for commercial, industrial, or scientific use. May supervise the manufacturing and installation of computer or computer-related equipment and components.
  • Electrical Engineer. Design, develop, or supervise the manufacturing and installation of electrical equipment, components, or systems for commercial, industrial, or scientific use.
  • Electronics Engineer. Research, design, and test electronic components and systems for commercial, industrial, or scientific use utilizing knowledge of electronic theory and materials properties. Design electronic circuits and components for use in fields such as telecommunications, aerospace guidance and propulsion control, acoustics, or instruments and controls.
  • Industrial Engineering Technician. Apply engineering theory and principles to problems of industrial layout or manufacturing production, usually under the direction of engineering staff. May study and record time, motion, and speed involved in performance of production, maintenance, and other worker operations for such purposes as establishing standard production rates or improving efficiency.
  • Manufacturing Engineer. Apply knowledge of materials and engineering theory and methods to design, integrate, and improve manufacturing systems or related processes. May work with commercial or industrial designers to refine product designs to increase producibility and decrease costs.
  • Materials Engineer. Evaluate materials and develop machinery and processes to manufacture materials for use in products that must meet specialized design and performance specifications. Develop new uses for known materials. Includes those working with composite materials or specializing in one type of material, such as graphite, metal and metal alloys, ceramics and glass, plastics and polymers, and naturally occurring materials.
  • Mechanical Engineer. Perform engineering duties in planning and designing tools, engines, and other mechanically functioning equipment. Oversee installation, operation, and repair of such equipment as centralized heat, gas, and steam systems.

EDUCATIONAL OPPORTUNITIES: Industrial Engineer Training

University of Minnesota-Twin Cities - Minneapolis, MN

University of Minnesota-Twin Cities, 100 Church Street SE, Minneapolis, MN 55455-0213. University of Minnesota-Twin Cities is a large university located in Minneapolis, Minnesota. It is a public school with primarily 4-year or above programs. It has 51,140 students and an admission rate of 53%. University of Minnesota-Twin Cities has one to two year, bachelor's degree, master's degree, and doctor's degree programs in Industrial Engineering which graduated zero, two, eleven, and three students respectively in 2008.

CERTIFICATIONS

Planning and Scheduling Professional: The PSP certification is to recognize specialists who meet a demanding set of planning and scheduling criteria by a rigorous examination, experience, education and ethical qualificaion.

For more information, see the AACE International (Association for the Advancement of Cost Engineering through total cost management) website.

Certified Forensic Claims Consultant : AACE International's Certified Forensic Claims Consultant (CFCC) certification program is designed to establish credentials to recognize your professional expertise.

For more information, see the AACE International (Association for the Advancement of Cost Engineering through total cost management) website.

Quality Process Analyst: The Certified Quality Process Analyst is a paraprofessional who, in support of and under the direction of quality engineers or supervisors, analyzes and solves quality problems and is involved in quality improvement projects.

For more information, see the American Society for Quality website.

Six Sigma Greenbelt: The Six Sigma Green Belt operates in support of or under the supervision of a Six Sigma Black Belt, analyzes and solves quality problems and is involved in quality improvement projects.

For more information, see the American Society for Quality website.

Quality Inspector Certification: The Certified Quality Inspector is an inspector who, in support of and under the direction of quality engineers, supervisors, or technicians, can use the proven techniques included in the body of knowledge.

For more information, see the American Society for Quality website.

Geometric Dimensioning & Tolerancing Professional - Technologist: ASME GDTP Certification provides the means to recognize proficiency in the understanding and application of the geometric dimensioning and tolerancing (GD&T) principles expressed in the ASME Y14.

For more information, see the American Society of Mechanical Engineers International website.

Certified Energy Manager: Since its inception in 1981, the Certified Energy Manager (CEM®) credential has become widely accepted and used as a measure of professional accomplishment within the energy management field.

For more information, see the Association of Energy Engineers website.

Certified Professional Ergonomist: The BCPE was established to provide a formal process for recognizing practitioners of human factors/ergonomics.

For more information, see the Board of Certification in Professional Ergonomics website.

Certified Associate in Materials Handling: MHMS is proud to offer a professional certification program for its members.

For more information, see the Materials Handling and Management Society website.

Industrial Instrumentation: This certification program was designed for engineering technicians who are engaged in a combination of the following instrumentation system activities: design assistance, installation and maintenance of industrial measurement and control systems, and the installation and maintenance of a variety of electrical, electronic, and pneumatic instruments used within systems.

For more information, see the National Institute for Certification in Engineering Technologies website.

Certified Enterprise Integrator: The CEI Certification recognizes a proficiency in leading cross-functional initiatives throughout a company's extended supply chain involving process, organization, and technology.

For more information, see the Society of Manufacturing Engineers website.

LICENSES

Engineer-In-Training

Licensing agency: Architecture, Engineering, Land Surveying, Landscape Architecture,
Address: Geoscience and Interior Design (AELSLAGID), Minnesota Board of, Minnesota Board of AELSLAGID, 85 7th Place East, Suite 160, St. Paul, MN 55101

Phone: (651) 296-2388
Website: Architecture, Engineering, Land Surveying, Landscape Architecture, Geoscience and Interior Design (AELSLAGID), Minnesota Board of Minnesota Board of AELSLAGID

LOCATION INFORMATION: St. Paul, Minnesota

St. Paul, Minnesota
St. Paul, Minnesota photo by Gridge

St. Paul is located in Ramsey County, Minnesota. It has a population of over 279,590, which has shrunk by 2.6% in the past ten years. The cost of living index in St. Paul, 99, is near the national average. New single-family homes in St. Paul are valued at $213,300 on average, which is well below the state average. In 2008, thirty new homes were built in St. Paul, down from seventy-four the previous year.

The three most popular industries for women in St. Paul are educational services, health care, and finance and insurance. For men, it is educational services, professional, scientific, and technical services, and construction. The average commute to work is about 21 minutes. More than 32.0% of St. Paul residents have a bachelor's degree, which is higher than the state average. The percentage of residents with a graduate degree, 12.0%, is higher than the state average.

The unemployment rate in St. Paul is 7.4%, which is greater than Minnesota's average of 7.0%.

The percentage of St. Paul residents that are affiliated with a religious congregation, 61.3%, is more than both the national and state average. Zion Church, Convent of the Visitation and Saint Paul Cathedral are some of the churches located in St. Paul. The most prominent religious groups are the Catholic Church, the Evangelical Lutheran Church in America and the Baptist General Conference.

St. Paul is home to the Saint Paul Orphange and the Wilder Center as well as Terrace Park and East View Playground.