Popular Careers

Career Development

Career development resources for aspiring professionals.

Career Change Center

Career change guides, tutorials and resources for professionals in transition.

Job Search Resources

Job search resources, websites, guides and directories for job seekers.


Career and Education Opportunities for Manufacturing Engineers in Detroit, Michigan

There is a wide variety of career and education opportunities for manufacturing engineers in the Detroit, Michigan area. There are currently 31,020 jobs for manufacturing engineers in Michigan and this is projected to grow 3% to about 31,970 jobs by 2016. This is not quite as good as the nation as a whole, where employment opportunities for manufacturing engineers are expected to grow by about 6.7%. In general, manufacturing engineers apply knowledge of materials and engineering theory and methods to design, integrate, and improve manufacturing systems or related processes.

The income of a manufacturing engineer is about $41 per hour or $87,260 per year on average in Michigan. In the U.S. as a whole, their income is about $42 hourly or $88,570 annually on average. Manufacturing engineers earn more than people working in the category of Engineering generally in Michigan and more than people in the Engineering category nationally. People working as manufacturing engineers can fill a number of jobs, such as: engineer, foundry process, engineer, methods, and foundry process engineer.

The Detroit area is home to seventy-three schools of higher education, including six within twenty-five miles of Detroit where you can get a degree as a manufacturing engineer. Manufacturing engineers usually hold a Bachelor's degree, so it will take about four years to learn to be a manufacturing engineer if you already have a high school diploma.

CAREER DESCRIPTION: Manufacturing Engineer

In general, manufacturing engineers apply knowledge of materials and engineering theory and methods to design, integrate, and improve manufacturing systems or related processes. They also may work with commercial or industrial designers to refine product designs to increase producibility and decrease costs.

Manufacturing engineers identify opportunities or implement changes to further optimize products or reduce costs using knowledge of fabrication processes, tooling and production equipment, assembly methods, quality control standards, or product layout, materials and parts. They also apply continuous improvement methods such as lean manufacturing to enhance manufacturing quality or cost-effectiveness. Equally important, manufacturing engineers have to communicate manufacturing capabilities or other data to enable production processes. They are often called upon to train production personnel in new or existing methods. They are expected to layout testing methods and test finished products or process capabilities to determine standards or validate process requirements. Finally, manufacturing engineers supervise technicians or other engineers.

Every day, manufacturing engineers are expected to be able to read and understand documents and reports. They need to articulate ideas and problems. It is also important that they listen to and understand others in meetings.

Manufacturing engineers sometimes are asked to purchase equipment or parts. They also have to be able to design layouts of equipment or work spaces to attain maximum efficiency and layout or troubleshoot manufacturing equipment. And finally, they sometimes have to furnish technical expertise or support pertaining to manufacturing.

Like many other jobs, manufacturing engineers must be able to absorb the factors involved and a problem and provide a well thought out solution and be reliable.

Similar jobs with educational opportunities in Detroit include:

  • Aerodynamics Engineer. Perform a variety of engineering work in designing, constructing, and testing aircraft, missiles, and spacecraft. May conduct basic and applied research to evaluate adaptability of materials and equipment to aircraft design and manufacture. May recommend improvements in testing equipment and techniques.
  • Biomedical Engineer. Apply knowledge of engineering, biology, and biomechanical principles to the design, development, and evaluation of biological and health systems and products, such as artificial organs, prostheses, instrumentation, medical information systems, and health management and care delivery systems.
  • Chemical Engineer. Design chemical plant equipment and devise processes for manufacturing chemicals and products, such as gasoline, synthetic rubber, and pulp, by applying principles and technology of chemistry, physics, and engineering.
  • Civil Engineer. Perform engineering duties in planning, designing, and overseeing construction and maintenance of building structures, and facilities, such as roads, railroads, airports, bridges, harbors, channels, dams, irrigation projects, pipelines, power plants, water and sewage systems, and waste disposal units. Includes architectural, structural, and geo-technical engineers.
  • Computer Engineer. Research, design, and test computer or computer-related equipment for commercial, industrial, or scientific use. May supervise the manufacturing and installation of computer or computer-related equipment and components.
  • Electrical Engineer. Design, develop, or supervise the manufacturing and installation of electrical equipment, components, or systems for commercial, industrial, or scientific use.
  • Electronics Engineer. Research, design, and test electronic components and systems for commercial, industrial, or scientific use utilizing knowledge of electronic theory and materials properties. Design electronic circuits and components for use in fields such as telecommunications, aerospace guidance and propulsion control, acoustics, or instruments and controls.
  • Fire Prevention Research Engineer. Research causes of fires, determine fire protection methods, and design or recommend materials or equipment such as structural components or fire-detection equipment to assist organizations in safeguarding life and property against fire, explosion, and related hazards.
  • Health, Safety, and Environment Manager. Plan, implement, and coordinate safety programs, requiring application of engineering principles and technology, to prevent or correct unsafe environmental working conditions.
  • Industrial Engineer. Design, develop, and evaluate integrated systems for managing industrial production processes including human work factors, quality control, inventory control, logistics and material flow, cost analysis, and production coordination.
  • Mechanical Engineer. Perform engineering duties in planning and designing tools, engines, and other mechanically functioning equipment. Oversee installation, operation, and repair of such equipment as centralized heat, gas, and steam systems.
  • Nuclear Engineer. Conduct research on nuclear engineering problems or apply principles and theory of nuclear science to problems concerned with release, control, and utilization of nuclear energy and nuclear waste disposal.
  • Petroleum Engineer. Devise methods to improve oil and gas well production and determine the need for new or modified tool designs. Oversee drilling and offer technical advice to achieve economical and satisfactory progress.
  • Product Safety Engineer. Develop and conduct tests to evaluate product safety levels and recommend measures to reduce or eliminate hazards.

EDUCATIONAL OPPORTUNITIES: Manufacturing Engineer Training

University of Michigan-Ann Arbor - Ann Arbor, MI

University of Michigan-Ann Arbor, , Ann Arbor, MI 48109. University of Michigan-Ann Arbor is a large university located in Ann Arbor, Michigan. It is a public school with primarily 4-year or above programs. It has 40,618 students and an admission rate of 42%. University of Michigan-Ann Arbor has 2 areas of study related to Manufacturing Engineer. They are:

  • Industrial Engineering, bachelor's degree, master's degree, and doctor's degree which graduated 167, seventy-eight, and sixteen students respectively in 2008.
  • Manufacturing Engineering, master's degree and doctor's degree which graduated nineteen and one students respectively in 2008.

University of Michigan-Dearborn - Dearborn, MI

University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128-1491. University of Michigan-Dearborn is a medium sized university located in Dearborn, Michigan. It is a public school with primarily 4-year or above programs. It has 8,311 students and an admission rate of 61%. University of Michigan-Dearborn has 2 areas of study related to Manufacturing Engineer. They are:

  • Industrial Engineering, bachelor's degree and master's degree which graduated eleven and eleven students respectively in 2008.
  • Manufacturing Engineering, bachelor's degree and master's degree which graduated one and two students respectively in 2008.

Wayne State University - Detroit, MI

Wayne State University, 656 West Kirby Street, Detroit, MI 48202. Wayne State University is a large university located in Detroit, Michigan. It is a public school with primarily 4-year or above programs. It has 31,025 students and an admission rate of 79%. Wayne State University has 2 areas of study related to Manufacturing Engineer. They are:

  • Industrial Engineering, bachelor's degree, master's degree, and doctor's degree which graduated fifteen, twenty-one, and one students respectively in 2008.
  • Manufacturing Engineering, master's degree which graduated 9 students in 2008.

Oakland University - Rochester Hills, MI

Oakland University, , Rochester Hills, MI 48309-4401. Oakland University is a large university located in Rochester Hills, Michigan. It is a public school with primarily 4-year or above programs. It has 18,169 students and an admission rate of 78%. Oakland University has a master's degree program in Industrial Engineering which graduated two students in 2008.

Lawrence Technological University - Southfield, MI

Lawrence Technological University, 21000 West Ten Mile Road, Southfield, MI 48075-1058. Lawrence Technological University is a small university located in Southfield, Michigan. It is a private not-for-profit school with primarily 4-year or above programs. It has 4,318 students and an admission rate of 60%. Lawrence Technological University has a master's degree and a doctor's degree program in Manufacturing Engineering which graduated nine and four students respectively in 2008.

University of Detroit Mercy - Detroit, MI

University of Detroit Mercy, 4001 W McNichols Rd, Detroit, MI 48221-3038. University of Detroit Mercy is a medium sized university located in Detroit, Michigan. It is a private not-for-profit school with primarily 4-year or above programs. It has 5,725 students and an admission rate of 64%. University of Detroit Mercy has a bachelor's degree program in Manufacturing Engineering which graduated one student in 2008.

CERTIFICATIONS

Certified Forensic Claims Consultant : AACE International's Certified Forensic Claims Consultant (CFCC) certification program is designed to establish credentials to recognize your professional expertise.

For more information, see the AACE International (Association for the Advancement of Cost Engineering through total cost management) website.

Geometric Dimensioning & Tolerancing Professional - Technologist: ASME GDTP Certification provides the means to recognize proficiency in the understanding and application of the geometric dimensioning and tolerancing (GD&T) principles expressed in the ASME Y14.

For more information, see the American Society of Mechanical Engineers International website.

Certified Energy Manager: Since its inception in 1981, the Certified Energy Manager (CEM®) credential has become widely accepted and used as a measure of professional accomplishment within the energy management field.

For more information, see the Association of Energy Engineers website.

Certified Energy Auditor: The Certified Energy Auditor (CEA) certification identifies professionals as having the required knowledge and experience needed to succeed in the growing field of energy auditing.

For more information, see the Association of Energy Engineers website.

Protective Coatings Specialist: This certification is geared toward individuals who are experienced, knowledgeable and capable of performing work at an advanced level in both the theory and practice of corrosion prevention and control, and who are capable of performing work at an advanced level in the protective coatings field.

For more information, see the NACE International website.

LOCATION INFORMATION: Detroit, Michigan

Detroit, Michigan
Detroit, Michigan photo by Durova

Detroit is located in Wayne County, Michigan. It has a population of over 912,062, which has shrunk by 4.1% in the past ten years. The cost of living index in Detroit, 86, is well below the national average. New single-family homes in Detroit are priced at $108,900 on average, which is well below the state average. In 2008, eighty-five new homes were built in Detroit, down from one hundred fifty-four the previous year.

The three big industries for women in Detroit are health care, educational services, and transportation equipment. For men, it is transportation equipment, construction, and administrative and support and waste management services. The average commute to work is about 28 minutes. More than 11.0% of Detroit residents have a bachelor's degree, which is lower than the state average. The percentage of residents with a graduate degree, 4.2%, is lower than the state average.

The unemployment rate in Detroit is 27.0%, which is greater than Michigan's average of 14.3%.

The percentage of Detroit residents that are affiliated with a religious congregation, 37.7%, is less than both the national and state average. The most common religious groups are the Catholic Church, the Muslim Estimate and the Lutheran Church.

Detroit is home to the Memorial Park Marina and the Detroit Golf Club as well as Chene Park and Mallett Playground. Visitors to Detroit can choose from Corktown Inn, Clark's Motel and Days Inn of Downtown Detroit for temporary stays in the area.