Popular Careers

Career Development

Career development resources for aspiring professionals.

Career Change Center

Career change guides, tutorials and resources for professionals in transition.

Job Search Resources

Job search resources, websites, guides and directories for job seekers.


Career and Education Opportunities for Materials Engineers in Worcester, Massachusetts

Materials engineers can find both educational opportunities and jobs in the Worcester, Massachusetts area. There are currently 670 working materials engineers in Massachusetts; this should grow by 2% to about 680 working materials engineers in the state by 2016. This is not quite as good as the nation as a whole, where employment opportunities for materials engineers are expected to grow by about 9.3%. Materials engineers generally evaluate materials and develop machinery and processes to manufacture materials for use in products that must meet specialized design and performance specifications.

A person working as a materials engineer can expect to earn about $41 per hour or $86,010 annually on average in Massachusetts and about $39 per hour or $81,820 annually on average in the U.S. as a whole. Compared with people working in the overall category of Engineering, people working as materials engineers in Massachusetts earn less. They earn less than people working in the overall category of Engineering nationally. People working as materials engineers can fill a number of jobs, such as: materials research engineer, extractive metallurgist, and green building materials designer.

There is one school within twenty-five miles of Worcester where you can study to be a materials engineer, among thirty-nine schools of higher education total in the Worcester area. Materials engineers usually hold a Bachelor's degree, so it will take about four years to learn to be a materials engineer if you already have a high school diploma.

CAREER DESCRIPTION: Materials Engineer

Materials Engineer video from the State of New Jersey Dept. of Labor and Workforce Development

In general, materials engineers evaluate materials and develop machinery and processes to manufacture materials for use in products that must meet specialized design and performance specifications. They also develop new uses for known materials.

Materials engineers monitor material performance and evaluate material deterioration. They also analyze product failure data and laboratory test results to establish causes of problems and design solutions. Equally important, materials engineers have to supervise the work of technologists as well as other engineers and scientists. They are often called upon to formulate and evaluate new projects, consulting with other engineers and corporate executives as needed. Finally, materials engineers evaluate technical specifications and economic factors relating to process or product layout objectives.

Every day, materials engineers are expected to be able to articulate ideas and problems. They need to listen to and understand others in meetings. It is also important that they think through problems and come up with general rules.

It is important for materials engineers to conduct or supervise tests on raw materials or finished products to insure their quality. They are often called upon to perform managerial functions, such as preparing proposals and budgets, analyzing labor costs, and writing reports. They also layout and direct the testing or control of processing procedures. They are sometimes expected to solve problems in variety of engineering fields, such as mechanical and aerospace. Somewhat less frequently, materials engineers are also expected to supervise production and testing processes in industrial settings, such as metal refining facilities, smelting or foundry operations, or nonmetallic materials production operations.

Materials engineers sometimes are asked to write for technical magazines and trade association publications. They also have to be able to supervise production and testing processes in industrial settings, such as metal refining facilities, smelting or foundry operations, or nonmetallic materials production operations and modify properties of metal alloys, using thermal and mechanical treatments. And finally, they sometimes have to layout and direct the testing or control of processing procedures.

Like many other jobs, materials engineers must be able to absorb the factors involved and a problem and provide a well thought out solution and be reliable.

Similar jobs with educational opportunities in Worcester include:

  • Aerodynamics Engineer. Perform a variety of engineering work in designing, constructing, and testing aircraft, missiles, and spacecraft. May conduct basic and applied research to evaluate adaptability of materials and equipment to aircraft design and manufacture. May recommend improvements in testing equipment and techniques.
  • Biomedical Engineer. Apply knowledge of engineering, biology, and biomechanical principles to the design, development, and evaluation of biological and health systems and products, such as artificial organs, prostheses, instrumentation, medical information systems, and health management and care delivery systems.
  • Chemical Engineer. Design chemical plant equipment and devise processes for manufacturing chemicals and products, such as gasoline, synthetic rubber, and pulp, by applying principles and technology of chemistry, physics, and engineering.
  • Civil Engineer. Perform engineering duties in planning, designing, and overseeing construction and maintenance of building structures, and facilities, such as roads, railroads, airports, bridges, harbors, channels, dams, irrigation projects, pipelines, power plants, water and sewage systems, and waste disposal units. Includes architectural, structural, and geo-technical engineers.
  • Civil Engineering Technician. Apply theory and principles of civil engineering in planning, designing, and overseeing construction and maintenance of structures and facilities under the direction of engineering staff or physical scientists.
  • Computer Engineer. Research, design, and test computer or computer-related equipment for commercial, industrial, or scientific use. May supervise the manufacturing and installation of computer or computer-related equipment and components.
  • Electrical Engineer. Design, develop, or supervise the manufacturing and installation of electrical equipment, components, or systems for commercial, industrial, or scientific use.
  • Electronics Engineer. Research, design, and test electronic components and systems for commercial, industrial, or scientific use utilizing knowledge of electronic theory and materials properties. Design electronic circuits and components for use in fields such as telecommunications, aerospace guidance and propulsion control, acoustics, or instruments and controls.
  • Equipment Engineering Technician. Apply electrical theory and related knowledge to test and modify developmental or operational electrical machinery and electrical control equipment and circuitry in industrial or commercial plants and laboratories. Usually work under direction of engineering staff.
  • Fire Prevention Research Engineer. Research causes of fires, determine fire protection methods, and design or recommend materials or equipment such as structural components or fire-detection equipment to assist organizations in safeguarding life and property against fire, explosion, and related hazards.
  • Health, Safety, and Environment Manager. Plan, implement, and coordinate safety programs, requiring application of engineering principles and technology, to prevent or correct unsafe environmental working conditions.
  • Industrial Engineer. Design, develop, and evaluate integrated systems for managing industrial production processes including human work factors, quality control, inventory control, logistics and material flow, cost analysis, and production coordination.
  • Industrial Engineering Technician. Apply engineering theory and principles to problems of industrial layout or manufacturing production, usually under the direction of engineering staff. May study and record time, motion, and speed involved in performance of production, maintenance, and other worker operations for such purposes as establishing standard production rates or improving efficiency.
  • Manufacturing Engineer. Apply knowledge of materials and engineering theory and methods to design, integrate, and improve manufacturing systems or related processes. May work with commercial or industrial designers to refine product designs to increase producibility and decrease costs.
  • Mechanical Engineer. Perform engineering duties in planning and designing tools, engines, and other mechanically functioning equipment. Oversee installation, operation, and repair of such equipment as centralized heat, gas, and steam systems.
  • Product Safety Engineer. Develop and conduct tests to evaluate product safety levels and recommend measures to reduce or eliminate hazards.

EDUCATIONAL OPPORTUNITIES: Materials Engineer Training

Worcester Polytechnic Institute - Worcester, MA

Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280. Worcester Polytechnic Institute is a small school located in Worcester, Massachusetts. It is a private not-for-profit school with primarily 4-year or above programs. It has 4,469 students and an admission rate of 67%. Worcester Polytechnic Institute has a master's degree and a doctor's degree program in Materials Engineering which graduated four and one students respectively in 2008.

CERTIFICATIONS

Planning and Scheduling Professional: The PSP certification is to recognize specialists who meet a demanding set of planning and scheduling criteria by a rigorous examination, experience, education and ethical qualificaion.

For more information, see the AACE International (Association for the Advancement of Cost Engineering through total cost management) website.

API 571 Supplemental Inspection Certification : API 571 Supplemental Inspection Certification program tests Inspectors' knowledge and expertise in the field of Corrosion and Materials.

For more information, see the American Petroleum Institute website.

Geometric Dimensioning & Tolerancing Professional - Technologist: ASME GDTP Certification provides the means to recognize proficiency in the understanding and application of the geometric dimensioning and tolerancing (GD&T) principles expressed in the ASME Y14.

For more information, see the American Society of Mechanical Engineers International website.

Protective Coatings Specialist: This certification is geared toward individuals who are experienced, knowledgeable and capable of performing work at an advanced level in both the theory and practice of corrosion prevention and control, and who are capable of performing work at an advanced level in the protective coatings field.

For more information, see the NACE International website.

Highway Materials: This certification program is for highway engineering technicians involved in laboratory and field testing of highway materials such as aggregates, asphalts, concrete, soils, paints, and metals.

For more information, see the National Institute for Certification in Engineering Technologies website.

LOCATION INFORMATION: Worcester, Massachusetts

Worcester, Massachusetts
Worcester, Massachusetts photo by Yassie

Worcester is located in Worcester County, Massachusetts. It has a population of over 175,011, which has grown by 1.4% in the past ten years. The cost of living index in Worcester, 121, is far greater than the national average. New single-family homes in Worcester cost $108,900 on average, which is far less than the state average. In 2008, sixty-one new homes were constructed in Worcester, down from two hundred fourteen the previous year.

The top three industries for women in Worcester are health care, educational services, and finance and insurance. For men, it is educational services, construction, and health care. The average commute to work is about 22 minutes. More than 23.3% of Worcester residents have a bachelor's degree, which is lower than the state average. The percentage of residents with a graduate degree, 9.8%, is lower than the state average.

The unemployment rate in Worcester is 9.9%, which is greater than Massachusetts's average of 8.4%.

The percentage of Worcester residents that are affiliated with a religious congregation, 57.4%, is more than the national average but less than the state average. Burncoat Baptist Church, United Congregational Church and Unitarian Universalist Church are among the churches located in Worcester. The largest religious groups are the Catholic Church, the United Church of Christ and the Episcopal Church.

Worcester is home to the Tatnuck Country Club and the Massachusetts Biotech Research Park as well as Ty Cobb Park and General Foley Stadium. Shopping malls in the area include Lincoln Plaza Shopping Center, Mid Town Mall and Norwich Place Shopping Center. Visitors to Worcester can choose from Days Inn, Hampton Inn and Maple Manor Hotel for temporary stays in the area.