Popular Careers

Career Development

Career development resources for aspiring professionals.

Career Change Center

Career change guides, tutorials and resources for professionals in transition.

Job Search Resources

Job search resources, websites, guides and directories for job seekers.

Career and Education Opportunities for Electronics Engineers in Jacksonville, Florida

Many educational and employment opportunities exist for electronics engineers in the Jacksonville, Florida area. There are currently 4,670 jobs for electronics engineers in Florida and this is projected to grow 7% to 4,970 jobs by 2016. This is better than the nation as a whole, where employment opportunities for electronics engineers are expected to grow by about 0.3%. In general, electronics engineers research, design, and test electronic components and systems for commercial, industrial, or scientific use utilizing knowledge of electronic theory and materials properties.

Electronics engineers earn about $38 hourly or $80,830 per year on average in Florida and about $41 per hour or $86,370 yearly on average nationally. Electronics engineers earn more than people working in the category of Engineering generally in Florida and more than people in the Engineering category nationally. Electronics engineers work in a variety of jobs, including: electronics research engineer, circuit design engineer, and commercial engineer.

There are two schools within twenty-five miles of Jacksonville where you can study to be an electronics engineer, among thirty-three schools of higher education total in the Jacksonville area. Given that the most common education level for electronics engineers is a Bachelor's degree, you can expect to spend about four years training to become an electronics engineer if you already have a high school diploma.

CAREER DESCRIPTION: Electronics Engineer

In general, electronics engineers research, design, and test electronic components and systems for commercial, industrial, or scientific use utilizing knowledge of electronic theory and materials properties. They also design electronic circuits and components for use in fields such as telecommunications, aerospace guidance and propulsion control, acoustics, or instruments and controls.

Electronics engineers talk with engineers, customers, vendors or others to consider existing and potential engineering projects or products. They also evaluate operational systems, prototypes and proposals and recommend repair or layout modifications, on the basis of factors such as environment and system capabilities. Equally important, electronics engineers have to direct and schedule efforts concerned with manufacture and modification of electronic equipment and systems. They are often called upon to design and perform operational, maintenance, and testing processes for electronic products and systems. Finally, electronics engineers furnish technical support and instruction to staff or customers regarding equipment standards, assisting with specific, difficult in-service engineering.

Every day, electronics engineers are expected to be able to articulate ideas and problems. They need to listen to and understand others in meetings. It is also important that they read and understand documents and reports.

It is important for electronics engineers to decide on material and equipment needs and order supplies. They are often called upon to operate computer-assisted engineering and layout software and apparatus to perform engineering tasks. They also inspect electronic equipment and systems to insure conformance to given requirements and applicable codes and regulations. They are sometimes expected to ready engineering sketches and requirements for construction and installation of equipment and systems. Somewhat less frequently, electronics engineers are also expected to ready documentation containing data such as confidential descriptions and specifications of proprietary hardware and software, product development and introduction schedules, product costs, and data related to product performance weaknesses.

and formulate and design applications and modifications for electronic properties used in components and systems, to further optimize technical performance. And finally, they sometimes have to design and perform operational, maintenance, and testing processes for electronic products and systems.

Like many other jobs, electronics engineers must be thorough and dependable and be reliable.

Similar jobs with educational opportunities in Jacksonville include:

  • Aerodynamics Engineer. Perform a variety of engineering work in designing, constructing, and testing aircraft, missiles, and spacecraft. May conduct basic and applied research to evaluate adaptability of materials and equipment to aircraft design and manufacture. May recommend improvements in testing equipment and techniques.
  • Agricultural Engineer. Apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products.
  • Biomedical Engineer. Apply knowledge of engineering, biology, and biomechanical principles to the design, development, and evaluation of biological and health systems and products, such as artificial organs, prostheses, instrumentation, medical information systems, and health management and care delivery systems.
  • Chemical Engineer. Design chemical plant equipment and devise processes for manufacturing chemicals and products, such as gasoline, synthetic rubber, and pulp, by applying principles and technology of chemistry, physics, and engineering.
  • Civil Engineer. Perform engineering duties in planning, designing, and overseeing construction and maintenance of building structures, and facilities, such as roads, railroads, airports, bridges, harbors, channels, dams, irrigation projects, pipelines, power plants, water and sewage systems, and waste disposal units. Includes architectural, structural, and geo-technical engineers.
  • Computer Engineer. Research, design, and test computer or computer-related equipment for commercial, industrial, or scientific use. May supervise the manufacturing and installation of computer or computer-related equipment and components.
  • Electrical Engineer. Design, develop, or supervise the manufacturing and installation of electrical equipment, components, or systems for commercial, industrial, or scientific use.
  • Fire Prevention Research Engineer. Research causes of fires, determine fire protection methods, and design or recommend materials or equipment such as structural components or fire-detection equipment to assist organizations in safeguarding life and property against fire, explosion, and related hazards.
  • Health, Safety, and Environment Manager. Plan, implement, and coordinate safety programs, requiring application of engineering principles and technology, to prevent or correct unsafe environmental working conditions.
  • Materials Engineer. Evaluate materials and develop machinery and processes to manufacture materials for use in products that must meet specialized design and performance specifications. Develop new uses for known materials. Includes those working with composite materials or specializing in one type of material, such as graphite, metal and metal alloys, ceramics and glass, plastics and polymers, and naturally occurring materials.
  • Mechanical Engineer. Perform engineering duties in planning and designing tools, engines, and other mechanically functioning equipment. Oversee installation, operation, and repair of such equipment as centralized heat, gas, and steam systems.
  • Nuclear Engineer. Conduct research on nuclear engineering problems or apply principles and theory of nuclear science to problems concerned with release, control, and utilization of nuclear energy and nuclear waste disposal.
  • Product Safety Engineer. Develop and conduct tests to evaluate product safety levels and recommend measures to reduce or eliminate hazards.

EDUCATIONAL OPPORTUNITIES: Electronics Engineer Training

University of Florida - Gainesville, FL

University of Florida, 355 Tigert Hall, Gainesville, FL 32611-3115. University of Florida is a large university located in Gainesville, Florida. It is a public school with primarily 4-year or above programs. It has 51,475 students and an admission rate of 41%. University of Florida has bachelor's degree, master's degree, and doctor's degree programs in Electrical, Electronics and Communications Engineering which graduated 141, 124, and thirty-three students respectively in 2008.

University of North Florida - Jacksonville, FL

University of North Florida, 1 UNF Drive, Jacksonville, FL 32224-2645. University of North Florida is a large university located in Jacksonville, Florida. It is a public school with primarily 4-year or above programs. It has 14,982 students and an admission rate of 48%. University of North Florida has a bachelor's degree program in Electrical, Electronics and Communications Engineering which graduated twenty-six students in 2008.


Planning and Scheduling Professional: The PSP certification is to recognize specialists who meet a demanding set of planning and scheduling criteria by a rigorous examination, experience, education and ethical qualificaion.

For more information, see the AACE International (Association for the Advancement of Cost Engineering through total cost management) website.

Geometric Dimensioning & Tolerancing Professional - Technologist: ASME GDTP Certification provides the means to recognize proficiency in the understanding and application of the geometric dimensioning and tolerancing (GD&T) principles expressed in the ASME Y14.

For more information, see the American Society of Mechanical Engineers International website.

CompTIA Radio Frequency Identification (RFID+) Certification: CompTIA Radio Frequency Identification (RFID+) certification validates the knowledge and skills of professionals who work with RFID technology.

For more information, see the Computing Technology Industry Association (CompTIA) website.

RADAR Electronics Technician: Radar electronics technicians are expected to obtain knowledge of radar basics and concepts which are then applicable to all the.

For more information, see the ETA International website.

Associate Certified Electronics Technician: Knowledge areas include: Electrical Theory, Electronic Components, Soldering-Desoldering & Tools, Block Diagrams - Schematics - Wiring Diagrams, Cabling, Power Supplies, test Equipment & Measurements, Safety Precautions, Mathematics & Formulas, Radio Communication Technology, Electronic Circuits: Series & Parallel, Amplifiers, Interfacing of Electronics Products, Digital Concepts & Circuitry, Computer Electronics, Computer Applications, Audio & Video Systems, Optical Electronics, Telecommunications Basics, Technician Work Procedures.

For more information, see the ETA International website.

IPC-A-600 Acceptability of Printed Circuit Boards: The IPC-A-600 Training and Certification Program helps all segments of the electronics interconnection industry improve their understanding of printed board quality issues; greatly enhances communication between PCB manufacturers, their suppliers and their customers; and provides a valuable portable credential to industry professionals as well as recognition for their companies.

For more information, see the IPC (Institute of Interconnecting and Packaging Electronic Circuits) website.

Electron Microscopy Technologist: The Microscopy Society of America (MSA), the world's largest professional association of microscopists, provides the only certification of technologists in biological transmission electron microscopy available in the Americas.

For more information, see the Microscopy Society of America website.

Junior Telecommunications Engineer: Telecommunications certification is applicable to professionals involved in the science and practice of communications by electromagnetic means.

For more information, see the National Association of Radio and Telecommunications Engineers, Inc. website.

LOCATION INFORMATION: Jacksonville, Florida

Jacksonville, Florida
Jacksonville, Florida photo by Digon3

Jacksonville is located in Duval County, Florida. It has a population of over 807,815, which has grown by 9.8% over the last ten years. The cost of living index in Jacksonville, 84, is well below the national average. New single-family homes in Jacksonville are valued at $173,500 on average, which is far less than the state average. In 2008, 2,592 new homes were built in Jacksonville, down from 3,449 the previous year.

The three most popular industries for women in Jacksonville are health care, finance and insurance, and educational services. For men, it is construction, finance and insurance, and accommodation and food services. The average commute to work is about 25 minutes. More than 21.1% of Jacksonville residents have a bachelor's degree, which is lower than the state average. The percentage of residents with a graduate degree, 6.5%, is lower than the state average.

The unemployment rate in Jacksonville is 10.9%, which is less than Florida's average of 11.3%.

The percentage of Jacksonville residents that are affiliated with a religious congregation, 44.2%, is less than the national average but more than the state average. Church of God-West Jacksonville, Church of Good Shepherd and Church of Our Savior are among the churches located in Jacksonville. The largest religious groups are the Southern Baptist Convention, the Catholic Church and the United Methodist Church.

Jacksonville is home to the Pearl Plaza and the Lane Center as well as Memorial Park and James Park. Shopping centers in the area include 5 Points West Shopping Center, Lone Star Road Shopping Center and Normandy Mall. Visitors to Jacksonville can choose from Civista Inn, Best Western Baldwin Inn and City Center Motel for temporary stays in the area.