Popular Careers

Career Development

Career development resources for aspiring professionals.

Career Change Center

Career change guides, tutorials and resources for professionals in transition.

Job Search Resources

Job search resources, websites, guides and directories for job seekers.


Career and Education Opportunities for Mechanical Engineers in Hartford, Connecticut

Mechanical engineers can find many career and educational opportunities in the Hartford, Connecticut area. The national trend for mechanical engineers sees this job pool growing by about 6.0% over the next eight years. In general, mechanical engineers perform engineering duties in planning and designing tools, engines, and other mechanically functioning equipment.

Mechanical engineers earn about $37 per hour or $77,690 per year on average in Connecticut and about $36 per hour or $74,920 annually on average nationally. Mechanical engineers earn less than people working in the category of Engineering generally in Connecticut and less than people in the Engineering category nationally. Jobs in this field include: tool designer, textile engineer, and engine designer.

There are sixty-two schools of higher education in the Hartford area, including five within twenty-five miles of Hartford where you can get a degree to start your career as a mechanical engineer. Mechanical engineers usually hold a Bachelor's degree, so it will take about four years to learn to be a mechanical engineer if you already have a high school diploma.

CAREER DESCRIPTION: Mechanical Engineer

Mechanical Engineer video from the State of New Jersey Dept. of Labor and Workforce Development

In general, mechanical engineers perform engineering duties in planning and designing tools, engines, and other mechanically functioning equipment. They also oversee installation, operation, and repair of such equipment as centralized heat, gas, and steam systems.

Mechanical engineers read and interpret blueprints, technical drawings and computer-generated reports. They also design and test models of alternate designs and processing methods to gauge feasibility, operating condition effects, possible new applications and necessity of modification. Equally important, mechanical engineers have to conduct research that tests and analyzes the feasibility, layout, operation and effectiveness of equipment, components and systems. Finally, mechanical engineers specify system components or direct modification of products to insure conformance with engineering layout and performance specifications.

Every day, mechanical engineers are expected to be able to think through problems and come up with general rules. They need to listen to and understand others in meetings. It is also important that they read and understand documents and reports.

It is important for mechanical engineers to talk with engineers and other personnel to execute operating procedures, resolve system malfunctions, and furnish technical data. They are often called upon to recommend layout modifications to remove machine or system malfunctions. They also research and maintain mechanical products, equipment, systems and processes to fit requirements, applying knowledge of engineering principles. They are sometimes expected to assist drafters in developing the structural layout of products using drafting tools or computer-assisted layout (CAD) or drafting equipment and software. Somewhat less frequently, mechanical engineers are also expected to estimate costs and submit bids for engineering or extraction projects, and ready contract documents.

Mechanical engineers sometimes are asked to layout test control apparatus and equipment and develop processes for testing products. They also have to be able to research and analyze customer layout proposals and other data to review the feasibility and maintenance requirements of designs or applications and solicit new business and furnish technical customer service. And finally, they sometimes have to solicit new business and furnish technical customer service.

Like many other jobs, mechanical engineers must be thorough and dependable and be able to absorb the factors involved and a problem and provide a well thought out solution.

Similar jobs with educational opportunities in Hartford include:

  • Architect. Plan and design structures, such as private residences, office buildings, and other structural property.
  • Architectural Drafter. Prepare detailed drawings of architectural designs and plans for buildings and structures according to specifications provided by architect.
  • Biomedical Engineer. Apply knowledge of engineering, biology, and biomechanical principles to the design, development, and evaluation of biological and health systems and products, such as artificial organs, prostheses, instrumentation, medical information systems, and health management and care delivery systems.
  • CAD/CAM Specialist. Prepare detailed working diagrams of machinery and mechanical devices, including dimensions, and other engineering information.
  • Chemical Engineer. Design chemical plant equipment and devise processes for manufacturing chemicals and products, such as gasoline, synthetic rubber, and pulp, by applying principles and technology of chemistry, physics, and engineering.
  • Civil Draftsman. Prepare drawings and topographical and relief maps used in civil engineering projects, such as highways, bridges, pipelines, flood control projects, and water and sewerage control systems.
  • Civil Engineer. Perform engineering duties in planning, designing, and overseeing construction and maintenance of building structures, and facilities, such as roads, railroads, airports, bridges, harbors, channels, dams, irrigation projects, pipelines, power plants, water and sewage systems, and waste disposal units. Includes architectural, structural, and geo-technical engineers.
  • Civil Engineering Technician. Apply theory and principles of civil engineering in planning, designing, and overseeing construction and maintenance of structures and facilities under the direction of engineering staff or physical scientists.
  • Computer Engineer. Research, design, and test computer or computer-related equipment for commercial, industrial, or scientific use. May supervise the manufacturing and installation of computer or computer-related equipment and components.
  • Electrical Engineer. Design, develop, or supervise the manufacturing and installation of electrical equipment, components, or systems for commercial, industrial, or scientific use.
  • Electronics Engineer. Research, design, and test electronic components and systems for commercial, industrial, or scientific use utilizing knowledge of electronic theory and materials properties. Design electronic circuits and components for use in fields such as telecommunications, aerospace guidance and propulsion control, acoustics, or instruments and controls.
  • Electronics Engineering Technician. Lay out, build, and modify developmental and production electronic components, parts, and systems, such as computer equipment, missile control instrumentation, electron tubes, and machine tool numerical controls, applying principles and theories of electronics, electrical circuitry, engineering mathematics, electronic and electrical testing, and physics. Usually work under direction of engineering staff.
  • Equipment Engineering Technician. Apply electrical theory and related knowledge to test and modify developmental or operational electrical machinery and electrical control equipment and circuitry in industrial or commercial plants and laboratories. Usually work under direction of engineering staff.
  • Fire Prevention Research Engineer. Research causes of fires, determine fire protection methods, and design or recommend materials or equipment such as structural components or fire-detection equipment to assist organizations in safeguarding life and property against fire, explosion, and related hazards.
  • Health, Safety, and Environment Manager. Plan, implement, and coordinate safety programs, requiring application of engineering principles and technology, to prevent or correct unsafe environmental working conditions.
  • Industrial Engineer. Design, develop, and evaluate integrated systems for managing industrial production processes including human work factors, quality control, inventory control, logistics and material flow, cost analysis, and production coordination.
  • Manufacturing Engineer. Apply knowledge of materials and engineering theory and methods to design, integrate, and improve manufacturing systems or related processes. May work with commercial or industrial designers to refine product designs to increase producibility and decrease costs.
  • Materials Engineer. Evaluate materials and develop machinery and processes to manufacture materials for use in products that must meet specialized design and performance specifications. Develop new uses for known materials. Includes those working with composite materials or specializing in one type of material, such as graphite, metal and metal alloys, ceramics and glass, plastics and polymers, and naturally occurring materials.
  • Product Safety Engineer. Develop and conduct tests to evaluate product safety levels and recommend measures to reduce or eliminate hazards.

EDUCATIONAL OPPORTUNITIES: Mechanical Engineer Training

Rensselaer Hartford Graduate Center Inc - Hartford, CT

Rensselaer Hartford Graduate Center Inc, 275 Windsor St, Hartford, CT 06120. Rensselaer Hartford Graduate Center Inc is a small school located in Hartford, Connecticut. It is a private not-for-profit school with primarily 4-year or above programs and has 723 students. Rensselaer Hartford Graduate Center Inc has a master's degree program in Mechanical Engineering which graduated twenty-two students in 2008.

Central Connecticut State University - New Britain, CT

Central Connecticut State University, 1615 Stanley St, New Britain, CT 06050. Central Connecticut State University is a large university located in New Britain, Connecticut. It is a public school with primarily 4-year or above programs. It has 12,233 students and an admission rate of 60%. Central Connecticut State University has a bachelor's degree program in Mechanical Engineering.

University of Connecticut - Storrs, CT

University of Connecticut, , Storrs, CT 06269. University of Connecticut is a large university located in Storrs, Connecticut. It is a public school with primarily 4-year or above programs. It has 24,273 students and an admission rate of 54%. University of Connecticut has bachelor's degree, master's degree, and doctor's degree programs in Mechanical Engineering which graduated eighty-five, fourteen, and ten students respectively in 2008.

University of Hartford - West Hartford, CT

University of Hartford, 200 Bloomfield Ave, West Hartford, CT 06117-1599. University of Hartford is a medium sized university located in West Hartford, Connecticut. It is a private not-for-profit school with primarily 4-year or above programs. It has 7,366 students and an admission rate of 60%. University of Hartford has a bachelor's degree and a master's degree program in Mechanical Engineering which graduated twenty-two and eight students respectively in 2008.

Western New England College - Springfield, MA

Western New England College, 1215 Wilbraham Rd, Springfield, MA 01119-2684. Western New England College is a small college located in Springfield, Massachusetts. It is a private not-for-profit school with primarily 4-year or above programs. It has 3,215 students and an admission rate of 73%. Western New England College has a bachelor's degree and a master's degree program in Mechanical Engineering which graduated twenty-nine and one students respectively in 2008.

CERTIFICATIONS

Planning and Scheduling Professional: The PSP certification is to recognize specialists who meet a demanding set of planning and scheduling criteria by a rigorous examination, experience, education and ethical qualificaion.

For more information, see the AACE International (Association for the Advancement of Cost Engineering through total cost management) website.

Geometric Dimensioning & Tolerancing Professional - Technologist: ASME GDTP Certification provides the means to recognize proficiency in the understanding and application of the geometric dimensioning and tolerancing (GD&T) principles expressed in the ASME Y14.

For more information, see the American Society of Mechanical Engineers International website.

Certified in Plumbing Design: The Certified in Plumbing Design (CPD) program is an international certification program for engineers and designers of plumbing systems.

For more information, see the American Society of Plumbing Engineers website.

Certified Associate in Materials Handling: MHMS is proud to offer a professional certification program for its members.

For more information, see the Materials Handling and Management Society website.

PV Installer Certification: The target candidate for NABCEP certification is the person responsible for the system installation (e.

For more information, see the North American Board of Certified Energy Practitioners website.

LICENSES

Professional Engineer

Licensing agency: Department of Consumer Protection
Address: Occupational & Professional Licensing, 165 Capitol Avenue, Hartford, CT 06106-1630

Phone: (860) 713-6135
Website: Department of Consumer Protection Occupational & Professional Licensing

LOCATION INFORMATION: Hartford, Connecticut

Hartford, Connecticut
Hartford, Connecticut photo by Contimm

Hartford is situated in Hartford County, Connecticut. It has a population of over 124,062, which has grown by 2.0% in the past ten years. The cost of living index in Hartford, 104, is above the national average. New single-family homes in Hartford cost $82,500 on average, which is far less than the state average. In 2008, eight new homes were constructed in Hartford, down from twelve the previous year.

The three big industries for women in Hartford are health care, finance and insurance, and educational services. For men, it is administrative and support and waste management services, construction, and accommodation and food services. The average commute to work is about 24 minutes. More than 12.4% of Hartford residents have a bachelor's degree, which is lower than the state average. The percentage of residents with a graduate degree, 5.2%, is lower than the state average.

The unemployment rate in Hartford is 14.4%, which is greater than Connecticut's average of 8.3%.

The percentage of Hartford residents that are affiliated with a religious congregation, 57.4%, is more than both the national and state average. Our Lady of Sorrows Church, All Saints Orthodox Church and Sacred Heart Church are all churches located in Hartford. The largest religious groups are the Catholic Church, the United Church of Christ and the Episcopal Church.

Hartford is home to the Albany Avenue Branch Hartford Public Library and the North Meadows Industrial Park as well as Little Hollywood Historic District and West End North Historic District. Shopping malls in the area include Park Plaza Shopping Center, Pavillion at State House Shopping Center and Civic Center Mall Shopping Center.