Popular Careers

Career Development

Career development resources for aspiring professionals.

Career Change Center

Career change guides, tutorials and resources for professionals in transition.

Job Search Resources

Job search resources, websites, guides and directories for job seekers.


Career and Education Opportunities for Fire Prevention Research Engineers in Hartford, Connecticut

Many educational and employment opportunities exist for fire prevention research engineers in the Hartford, Connecticut area. There are currently 400 jobs for fire prevention research engineers in Connecticut and this is projected to grow by 3% to 410 jobs by 2016. This is not quite as good as the nation as a whole, where employment opportunities for fire prevention research engineers are expected to grow by about 10.3%. Fire prevention research engineers generally research causes of fires, determine fire protection methods, and design or recommend materials or equipment such as structural components or fire-detection equipment to assist organizations in safeguarding life and property against fire, explosion, and related hazards.

Fire prevention research engineers earn approximately $38 hourly or $80,590 yearly on average in Connecticut. Nationally they average about $34 hourly or $72,490 annually. Earnings for fire prevention research engineers are not quite as good as earnings in the general category of Engineering in Connecticut and not quite as good as general Engineering category earnings nationally. Fire prevention research engineers work in a variety of jobs, including: loss control manager, engineer, and design director.

There are two schools within twenty-five miles of Hartford where you can study to be a fire prevention research engineer, among sixty-two schools of higher education total in the Hartford area. The most common level of education for fire prevention research engineers is a Bachelor's degree. You can expect to spend about four years studying to be a fire prevention research engineer if you already have a high school diploma.

CAREER DESCRIPTION: Fire Prevention Research Engineer

Fire Prevention Research Engineer video from the State of New Jersey Dept. of Labor and Workforce Development

In general, fire prevention research engineers research causes of fires, determine fire protection methods, and design or recommend materials or equipment such as structural components or fire-detection equipment to assist organizations in safeguarding life and property against fire, explosion, and related hazards.

Fire prevention research engineers attend workshops or conferences to present or obtain data regarding fire prevention and protection. They also layout fire detection equipment and fire extinguishing devices and systems. Equally important, fire prevention research engineers have to inspect buildings or building designs to establish fire protection system requirements and potential problems in areas such as water supplies and construction materials. They are often called upon to advise architects and other construction personnel on fire prevention equipment and techniques, and on fire code and standard interpretation and compliance. They are expected to ready and write reports detailing specific fire prevention and protection issues such as work performed and proposed review schedules. Finally, fire prevention research engineers design plans for the prevention of destruction by fire and water.

Every day, fire prevention research engineers are expected to be able to articulate ideas and problems. They need to think through problems and come up with general rules. It is also important that they listen to and understand others in meetings.

It is important for fire prevention research engineers to design training materials and conduct training sessions on fire protection. They are often called upon to study the relationships between ignition sources and materials to establish how fires start. They also decide on causes of fires and ways in which they could have been prevented. They are sometimes expected to evaluate fire department performance and the laws and regulations affecting fire prevention or fire safety. Somewhat less frequently, fire prevention research engineers are also expected to evaluate fire department performance and the laws and regulations affecting fire prevention or fire safety.

They also have to be able to conduct research on fire retardants and the fire safety of materials and devices And finally, they sometimes have to conduct research on fire retardants and the fire safety of materials and devices.

Like many other jobs, fire prevention research engineers must have exceptional integrity and be thorough and dependable.

Similar jobs with educational opportunities in Hartford include:

  • Biomedical Engineer. Apply knowledge of engineering, biology, and biomechanical principles to the design, development, and evaluation of biological and health systems and products, such as artificial organs, prostheses, instrumentation, medical information systems, and health management and care delivery systems.
  • Chemical Engineer. Design chemical plant equipment and devise processes for manufacturing chemicals and products, such as gasoline, synthetic rubber, and pulp, by applying principles and technology of chemistry, physics, and engineering.
  • Civil Engineer. Perform engineering duties in planning, designing, and overseeing construction and maintenance of building structures, and facilities, such as roads, railroads, airports, bridges, harbors, channels, dams, irrigation projects, pipelines, power plants, water and sewage systems, and waste disposal units. Includes architectural, structural, and geo-technical engineers.
  • Computer Engineer. Research, design, and test computer or computer-related equipment for commercial, industrial, or scientific use. May supervise the manufacturing and installation of computer or computer-related equipment and components.
  • Electrical Engineer. Design, develop, or supervise the manufacturing and installation of electrical equipment, components, or systems for commercial, industrial, or scientific use.
  • Electronics Engineer. Research, design, and test electronic components and systems for commercial, industrial, or scientific use utilizing knowledge of electronic theory and materials properties. Design electronic circuits and components for use in fields such as telecommunications, aerospace guidance and propulsion control, acoustics, or instruments and controls.
  • Health, Safety, and Environment Manager. Plan, implement, and coordinate safety programs, requiring application of engineering principles and technology, to prevent or correct unsafe environmental working conditions.
  • Industrial Engineer. Design, develop, and evaluate integrated systems for managing industrial production processes including human work factors, quality control, inventory control, logistics and material flow, cost analysis, and production coordination.
  • Manufacturing Engineer. Apply knowledge of materials and engineering theory and methods to design, integrate, and improve manufacturing systems or related processes. May work with commercial or industrial designers to refine product designs to increase producibility and decrease costs.
  • Materials Engineer. Evaluate materials and develop machinery and processes to manufacture materials for use in products that must meet specialized design and performance specifications. Develop new uses for known materials. Includes those working with composite materials or specializing in one type of material, such as graphite, metal and metal alloys, ceramics and glass, plastics and polymers, and naturally occurring materials.
  • Mechanical Engineer. Perform engineering duties in planning and designing tools, engines, and other mechanically functioning equipment. Oversee installation, operation, and repair of such equipment as centralized heat, gas, and steam systems.
  • Product Safety Engineer. Develop and conduct tests to evaluate product safety levels and recommend measures to reduce or eliminate hazards.

EDUCATIONAL OPPORTUNITIES: Fire Prevention Research Engineer Training

University of Connecticut - Storrs, CT

University of Connecticut, , Storrs, CT 06269. University of Connecticut is a large university located in Storrs, Connecticut. It is a public school with primarily 4-year or above programs. It has 24,273 students and an admission rate of 54%. University of Connecticut has bachelor's degree, master's degree, and doctor's degree programs in Environmental/Environmental Health Engineering which graduated four, six, and one students respectively in 2008.

University of Hartford - West Hartford, CT

University of Hartford, 200 Bloomfield Ave, West Hartford, CT 06117-1599. University of Hartford is a medium sized university located in West Hartford, Connecticut. It is a private not-for-profit school with primarily 4-year or above programs. It has 7,366 students and an admission rate of 60%. University of Hartford has a master's degree program in Environmental/Environmental Health Engineering which graduated five students in 2008.

CERTIFICATIONS

Risk Management for Public Entities: Understand the unique nature of the public sector.

For more information, see the American Institute for CPCU and Insurance Institute of America website.

Certified Energy Manager: Since its inception in 1981, the Certified Energy Manager (CEM®) credential has become widely accepted and used as a measure of professional accomplishment within the energy management field.

For more information, see the Association of Energy Engineers website.

Certified Water Technologist: The Certified Water Technologist (CWT) program represents the highest professional credential in the industrial and commercial water treatment field.

For more information, see the Association of Water Technologies website.

Certified Professional Ergonomist: The BCPE was established to provide a formal process for recognizing practitioners of human factors/ergonomics.

For more information, see the Board of Certification in Professional Ergonomics website.

Certified Environmental Health Technician: CEHT is for individuals who are interested in field intensive environmental health activities--such as testing, sampling, and inspections, and who are required to provide information on safe environmental health practices and to eliminate environmental health hazards.

For more information, see the National Environmental Health Association website.

Inspection and Testing of Water-Based Systems: This certification program was designed for engineering technicians in the automatic fire sprinkler industry who are engaged in the physical and mechanical aspects of inspection, testing, and maintenance of water-based systems including foam and foam-water systems.

For more information, see the National Institute for Certification in Engineering Technologies website.

Registered Radiation Protection Technologist: A Radiation Protection Technologist is a person engaged in providing radiation protection to the radiation worker, the general public, and the environment from the effects of ionizing radiation.

For more information, see the National Registry of Radiation Protection Technologists website.

Municipal Solid Waste Management Systems - Technical Associate: By earning this certification, you will demonstrate knowledge and proficiency that only the top in a field can show.

For more information, see the Solid Waste Association of North America website.

Bioreactor Landfill - Technical Associate: By earning this certification, you will demonstrate knowledge and proficiency in this new technology.

For more information, see the Solid Waste Association of North America website.

LOCATION INFORMATION: Hartford, Connecticut

Hartford, Connecticut
Hartford, Connecticut photo by Contimm

Hartford is situated in Hartford County, Connecticut. It has a population of over 124,062, which has grown by 2.0% in the past ten years. The cost of living index in Hartford, 104, is above the national average. New single-family homes in Hartford cost $82,500 on average, which is far less than the state average. In 2008, eight new homes were constructed in Hartford, down from twelve the previous year.

The three big industries for women in Hartford are health care, finance and insurance, and educational services. For men, it is administrative and support and waste management services, construction, and accommodation and food services. The average commute to work is about 24 minutes. More than 12.4% of Hartford residents have a bachelor's degree, which is lower than the state average. The percentage of residents with a graduate degree, 5.2%, is lower than the state average.

The unemployment rate in Hartford is 14.4%, which is greater than Connecticut's average of 8.3%.

The percentage of Hartford residents that are affiliated with a religious congregation, 57.4%, is more than both the national and state average. Our Lady of Sorrows Church, All Saints Orthodox Church and Sacred Heart Church are all churches located in Hartford. The largest religious groups are the Catholic Church, the United Church of Christ and the Episcopal Church.

Hartford is home to the Albany Avenue Branch Hartford Public Library and the North Meadows Industrial Park as well as Little Hollywood Historic District and West End North Historic District. Shopping malls in the area include Park Plaza Shopping Center, Pavillion at State House Shopping Center and Civic Center Mall Shopping Center.