Popular Careers

Career Development

Career development resources for aspiring professionals.

Career Change Center

Career change guides, tutorials and resources for professionals in transition.

Job Search Resources

Job search resources, websites, guides and directories for job seekers.


Career and Education Opportunities for Electronics Engineers in Bridgeport, Connecticut

Electronics engineer career and educational opportunities abound in Bridgeport, Connecticut. Currently, 1,550 people work as electronics engineers in Connecticut. This is expected to grow 2% to about 1,580 people by 2016. This is better than the nation as a whole, where employment opportunities for electronics engineers are expected to grow by about 0.3%. In general, electronics engineers research, design, and test electronic components and systems for commercial, industrial, or scientific use utilizing knowledge of electronic theory and materials properties.

A person working as an electronics engineer can expect to earn about $39 per hour or $82,170 yearly on average in Connecticut and about $41 per hour or $86,370 yearly on average in the U.S. as a whole. Earnings for electronics engineers are better than earnings in the general category of Engineering in Connecticut and better than general Engineering category earnings nationally. Jobs in this field include: test engineering manager, engineering manager, and nanotechnologist.

There are five schools within twenty-five miles of Bridgeport where you can study to be an electronics engineer, among seventy-five schools of higher education total in the Bridgeport area. The most common level of education for electronics engineers is a Bachelor's degree. You can expect to spend about four years studying to be an electronics engineer if you already have a high school diploma.

CAREER DESCRIPTION: Electronics Engineer

In general, electronics engineers research, design, and test electronic components and systems for commercial, industrial, or scientific use utilizing knowledge of electronic theory and materials properties. They also design electronic circuits and components for use in fields such as telecommunications, aerospace guidance and propulsion control, acoustics, or instruments and controls.

Electronics engineers talk with engineers, customers, vendors or others to consider existing and potential engineering projects or products. They also evaluate operational systems, prototypes and proposals and recommend repair or layout modifications, on the basis of factors such as environment and system capabilities. Equally important, electronics engineers have to direct and schedule efforts concerned with manufacture and modification of electronic equipment and systems. They are often called upon to design and perform operational, maintenance, and testing processes for electronic products and systems. Finally, electronics engineers furnish technical support and instruction to staff or customers regarding equipment standards, assisting with specific, difficult in-service engineering.

Every day, electronics engineers are expected to be able to articulate ideas and problems. They need to listen to and understand others in meetings. It is also important that they read and understand documents and reports.

It is important for electronics engineers to decide on material and equipment needs and order supplies. They are often called upon to operate computer-assisted engineering and layout software and apparatus to perform engineering tasks. They also inspect electronic equipment and systems to insure conformance to given requirements and applicable codes and regulations. They are sometimes expected to ready engineering sketches and requirements for construction and installation of equipment and systems. Somewhat less frequently, electronics engineers are also expected to ready documentation containing data such as confidential descriptions and specifications of proprietary hardware and software, product development and introduction schedules, product costs, and data related to product performance weaknesses.

and formulate and design applications and modifications for electronic properties used in components and systems, to further optimize technical performance. And finally, they sometimes have to design and perform operational, maintenance, and testing processes for electronic products and systems.

Like many other jobs, electronics engineers must be thorough and dependable and be reliable.

Similar jobs with educational opportunities in Bridgeport include:

  • Biomedical Engineer. Apply knowledge of engineering, biology, and biomechanical principles to the design, development, and evaluation of biological and health systems and products, such as artificial organs, prostheses, instrumentation, medical information systems, and health management and care delivery systems.
  • Chemical Engineer. Design chemical plant equipment and devise processes for manufacturing chemicals and products, such as gasoline, synthetic rubber, and pulp, by applying principles and technology of chemistry, physics, and engineering.
  • Civil Engineer. Perform engineering duties in planning, designing, and overseeing construction and maintenance of building structures, and facilities, such as roads, railroads, airports, bridges, harbors, channels, dams, irrigation projects, pipelines, power plants, water and sewage systems, and waste disposal units. Includes architectural, structural, and geo-technical engineers.
  • Computer Engineer. Research, design, and test computer or computer-related equipment for commercial, industrial, or scientific use. May supervise the manufacturing and installation of computer or computer-related equipment and components.
  • Electrical Engineer. Design, develop, or supervise the manufacturing and installation of electrical equipment, components, or systems for commercial, industrial, or scientific use.
  • Fire Prevention Research Engineer. Research causes of fires, determine fire protection methods, and design or recommend materials or equipment such as structural components or fire-detection equipment to assist organizations in safeguarding life and property against fire, explosion, and related hazards.
  • Health, Safety, and Environment Manager. Plan, implement, and coordinate safety programs, requiring application of engineering principles and technology, to prevent or correct unsafe environmental working conditions.
  • Industrial Engineer. Design, develop, and evaluate integrated systems for managing industrial production processes including human work factors, quality control, inventory control, logistics and material flow, cost analysis, and production coordination.
  • Industrial Engineering Technician. Apply engineering theory and principles to problems of industrial layout or manufacturing production, usually under the direction of engineering staff. May study and record time, motion, and speed involved in performance of production, maintenance, and other worker operations for such purposes as establishing standard production rates or improving efficiency.
  • Manufacturing Engineer. Apply knowledge of materials and engineering theory and methods to design, integrate, and improve manufacturing systems or related processes. May work with commercial or industrial designers to refine product designs to increase producibility and decrease costs.
  • Mechanical Engineer. Perform engineering duties in planning and designing tools, engines, and other mechanically functioning equipment. Oversee installation, operation, and repair of such equipment as centralized heat, gas, and steam systems.
  • Product Safety Engineer. Develop and conduct tests to evaluate product safety levels and recommend measures to reduce or eliminate hazards.

EDUCATIONAL OPPORTUNITIES: Electronics Engineer Training

University of Bridgeport - Bridgeport, CT

University of Bridgeport, 126 Park Avenue, Bridgeport, CT 06604-5620. University of Bridgeport is a medium sized university located in Bridgeport, Connecticut. It is a private not-for-profit school with primarily 4-year or above programs. It has 5,323 students and an admission rate of 62%. University of Bridgeport has a master's degree program in Electrical, Electronics and Communications Engineering which graduated 105 students in 2008.

Yale University - New Haven, CT

Yale University, , New Haven, CT 06520. Yale University is a large university located in New Haven, Connecticut. It is a private not-for-profit school with primarily 4-year or above programs. It has 11,420 students and an admission rate of 10%. Yale University has bachelor's degree, master's degree, post-master's certificate, and doctor's degree programs in Electrical, Electronics and Communications Engineering which graduated one, ten, seven, and eight students respectively in 2008.

Central Connecticut State University - New Britain, CT

Central Connecticut State University, 1615 Stanley St, New Britain, CT 06050. Central Connecticut State University is a large university located in New Britain, Connecticut. It is a public school with primarily 4-year or above programs. It has 12,233 students and an admission rate of 60%. Central Connecticut State University has a bachelor's degree program in Electrical, Electronics and Communications Engineering which graduated seven students in 2008.

University of New Haven - West Haven, CT

University of New Haven, 300 Boston Post Road, West Haven, CT 06516. University of New Haven is a medium sized university located in West Haven, Connecticut. It is a private not-for-profit school with primarily 4-year or above programs. It has 5,739 students and an admission rate of 68%. University of New Haven has associate's degree, bachelor's degree, and master's degree programs in Electrical, Electronics and Communications Engineering which graduated zero, three, and fifty-two students respectively in 2008.

SUNY Maritime College - Throggs Neck, NY

SUNY Maritime College, 6 Pennyfield Avenue, Throggs Neck, NY 10465-4198. SUNY Maritime College is a small college located in Throggs Neck, New York. It is a public school with primarily 4-year or above programs. It has 1,602 students and an admission rate of 69%. SUNY Maritime College has a bachelor's degree program in Electrical, Electronics and Communications Engineering which graduated ten students in 2008.

CERTIFICATIONS

Planning and Scheduling Professional: The PSP certification is to recognize specialists who meet a demanding set of planning and scheduling criteria by a rigorous examination, experience, education and ethical qualificaion.

For more information, see the AACE International (Association for the Advancement of Cost Engineering through total cost management) website.

Geometric Dimensioning & Tolerancing Professional - Technologist: ASME GDTP Certification provides the means to recognize proficiency in the understanding and application of the geometric dimensioning and tolerancing (GD&T) principles expressed in the ASME Y14.

For more information, see the American Society of Mechanical Engineers International website.

CompTIA Radio Frequency Identification (RFID+) Certification: CompTIA Radio Frequency Identification (RFID+) certification validates the knowledge and skills of professionals who work with RFID technology.

For more information, see the Computing Technology Industry Association (CompTIA) website.

RADAR Electronics Technician: Radar electronics technicians are expected to obtain knowledge of radar basics and concepts which are then applicable to all the.

For more information, see the ETA International website.

Associate Certified Electronics Technician: Knowledge areas include: Electrical Theory, Electronic Components, Soldering-Desoldering & Tools, Block Diagrams - Schematics - Wiring Diagrams, Cabling, Power Supplies, test Equipment & Measurements, Safety Precautions, Mathematics & Formulas, Radio Communication Technology, Electronic Circuits: Series & Parallel, Amplifiers, Interfacing of Electronics Products, Digital Concepts & Circuitry, Computer Electronics, Computer Applications, Audio & Video Systems, Optical Electronics, Telecommunications Basics, Technician Work Procedures.

For more information, see the ETA International website.

IPC-A-600 Acceptability of Printed Circuit Boards: The IPC-A-600 Training and Certification Program helps all segments of the electronics interconnection industry improve their understanding of printed board quality issues; greatly enhances communication between PCB manufacturers, their suppliers and their customers; and provides a valuable portable credential to industry professionals as well as recognition for their companies.

For more information, see the IPC (Institute of Interconnecting and Packaging Electronic Circuits) website.

Electron Microscopy Technologist: The Microscopy Society of America (MSA), the world's largest professional association of microscopists, provides the only certification of technologists in biological transmission electron microscopy available in the Americas.

For more information, see the Microscopy Society of America website.

Junior Telecommunications Engineer: Telecommunications certification is applicable to professionals involved in the science and practice of communications by electromagnetic means.

For more information, see the National Association of Radio and Telecommunications Engineers, Inc. website.

LICENSES

Professional Engineer

Licensing agency: Department of Consumer Protection
Address: Occupational & Professional Licensing, 165 Capitol Avenue, Hartford, CT 06106-1630

Phone: (860) 713-6135
Website: Department of Consumer Protection Occupational & Professional Licensing

LOCATION INFORMATION: Bridgeport, Connecticut

Bridgeport, Connecticut
Bridgeport, Connecticut photo by Xtremeyanksfan22

Bridgeport is located in Fairfield County, Connecticut. It has a population of over 136,405, which has shrunk by 2.2% in the past ten years. The cost of living index in Bridgeport, 151, is far greater than the national average. New single-family homes in Bridgeport are valued at $110,900 on average, which is far less than the state average. In 2008, twenty-six new homes were built in Bridgeport, down from forty-one the previous year.

The three big industries for women in Bridgeport are health care, educational services, and finance and insurance. For men, it is construction, administrative and support and waste management services, and accommodation and food services. The average commute to work is about 25 minutes. More than 12.2% of Bridgeport residents have a bachelor's degree, which is lower than the state average. The percentage of residents with a graduate degree, 4.6%, is lower than the state average.

The unemployment rate in Bridgeport is 12.1%, which is greater than Connecticut's average of 8.3%.

The percentage of Bridgeport residents that are affiliated with a religious congregation, 70.1%, is more than both the national and state average. Calvary Episcopal Church, Golden Hill United Methodist Church and Good Shepherd Christian Church are among the churches located in Bridgeport. The most common religious groups are the Catholic Church, the Episcopal Church and the United Church of Christ.

Bridgeport is home to the North Branch Bridgeport Public Library and the Challenger Learning Center as well as Went Field and Johnson Oak Park. Shopping centers in the area include Lafayette Shopping Plaza Shopping Center, Baldwin Plaza Shopping Center and Bayview Shopping Center.