Popular Careers

Career Development

Career development resources for aspiring professionals.

Career Change Center

Career change guides, tutorials and resources for professionals in transition.

Job Search Resources

Job search resources, websites, guides and directories for job seekers.


Career and Education Opportunities for Biomedical Engineers in Chandler, Arizona

There are many career and education opportunities for biomedical engineers in the Chandler, Arizona area. About 140 people are currently employed as biomedical engineers in Arizona. By 2016, this is expected to grow by 27% to 180 people employed. This is not quite as good as the national trend for biomedical engineers, which sees this job pool growing by about 72.0% over the next eight years. In general, biomedical engineers apply knowledge of engineering, biology, and biomechanical principles to the design, development, and evaluation of biological and health systems and products, such as artificial organs, prostheses, instrumentation, medical information systems, and health management and care delivery systems.

The income of a biomedical engineer is about $21 hourly or $44,510 annually on average in Arizona. In the U.S. as a whole, their income is about $37 per hour or $77,400 yearly on average. Biomedical engineers earn less than people working in the category of Engineering generally in Arizona and less than people in the Engineering category nationally. People working as biomedical engineers can fill a number of jobs, such as: biomedical scientist, orthopedic designer, and supplier quality engineer .

The Chandler area is home to seventy-seven schools of higher education, including one within twenty-five miles of Chandler where you can get a degree as a biomedical engineer. Biomedical engineers usually hold a Bachelor's degree, so it will take about four years to learn to be a biomedical engineer if you already have a high school diploma.

CAREER DESCRIPTION: Biomedical Engineer

Biomedical Engineer video from the State of New Jersey Dept. of Labor and Workforce Development

In general, biomedical engineers apply knowledge of engineering, biology, and biomechanical principles to the design, development, and evaluation of biological and health systems and products, such as artificial organs, prostheses, instrumentation, medical information systems, and health management and care delivery systems.

Every day, biomedical engineers are expected to be able to think through problems and come up with general rules. They need to articulate ideas and problems. It is also important that they listen to and understand others in meetings.

It is important for biomedical engineers to advise hospital administrators on the planning and use of medical equipment. They are often called upon to set up and/or repair biomedical equipment. They also advise and help in the application of instrumentation in clinical environments. They are sometimes expected to layout and deliver technology to help people with disabilities. Somewhat less frequently, biomedical engineers are also expected to teach biomedical engineering or disseminate knowledge about field through writing or consulting.

Biomedical engineers sometimes are asked to layout and develop medical diagnostic and clinical instrumentation, equipment, and procedures, using the principles of engineering and biobehavioral sciences. They also have to be able to design models or computer simulations of human biobehavioral systems to obtain data for measuring or controlling life processes and research new materials to be used for products. And finally, they sometimes have to conduct research, along with life scientists and medical scientists, on the engineering aspects of the biological systems of humans and animals.

Like many other jobs, biomedical engineers must be reliable and be thorough and dependable.

Similar jobs with educational opportunities in Chandler include:

  • Aerodynamics Engineer. Perform a variety of engineering work in designing, constructing, and testing aircraft, missiles, and spacecraft. May conduct basic and applied research to evaluate adaptability of materials and equipment to aircraft design and manufacture. May recommend improvements in testing equipment and techniques.
  • Chemical Engineer. Design chemical plant equipment and devise processes for manufacturing chemicals and products, such as gasoline, synthetic rubber, and pulp, by applying principles and technology of chemistry, physics, and engineering.
  • Civil Engineer. Perform engineering duties in planning, designing, and overseeing construction and maintenance of building structures, and facilities, such as roads, railroads, airports, bridges, harbors, channels, dams, irrigation projects, pipelines, power plants, water and sewage systems, and waste disposal units. Includes architectural, structural, and geo-technical engineers.
  • Computer Engineer. Research, design, and test computer or computer-related equipment for commercial, industrial, or scientific use. May supervise the manufacturing and installation of computer or computer-related equipment and components.
  • Electrical Engineer. Design, develop, or supervise the manufacturing and installation of electrical equipment, components, or systems for commercial, industrial, or scientific use.
  • Electronics Engineer. Research, design, and test electronic components and systems for commercial, industrial, or scientific use utilizing knowledge of electronic theory and materials properties. Design electronic circuits and components for use in fields such as telecommunications, aerospace guidance and propulsion control, acoustics, or instruments and controls.
  • Fire Prevention Research Engineer. Research causes of fires, determine fire protection methods, and design or recommend materials or equipment such as structural components or fire-detection equipment to assist organizations in safeguarding life and property against fire, explosion, and related hazards.
  • Health, Safety, and Environment Manager. Plan, implement, and coordinate safety programs, requiring application of engineering principles and technology, to prevent or correct unsafe environmental working conditions.
  • Industrial Engineer. Design, develop, and evaluate integrated systems for managing industrial production processes including human work factors, quality control, inventory control, logistics and material flow, cost analysis, and production coordination.
  • Manufacturing Engineer. Apply knowledge of materials and engineering theory and methods to design, integrate, and improve manufacturing systems or related processes. May work with commercial or industrial designers to refine product designs to increase producibility and decrease costs.
  • Mechanical Engineer. Perform engineering duties in planning and designing tools, engines, and other mechanically functioning equipment. Oversee installation, operation, and repair of such equipment as centralized heat, gas, and steam systems.
  • Product Safety Engineer. Develop and conduct tests to evaluate product safety levels and recommend measures to reduce or eliminate hazards.

EDUCATIONAL OPPORTUNITIES: Biomedical Engineer Training

Arizona State University - Tempe, AZ

Arizona State University, , Tempe, AZ 85287. Arizona State University is a large university located in Tempe, Arizona. It is a public school with primarily 4-year or above programs. It has 67,082 students and an admission rate of 82%. Arizona State University has bachelor's degree, master's degree, and doctor's degree programs in Biomedical/Medical Engineering which graduated ninety-two, nineteen, and five students respectively in 2008.

CERTIFICATIONS

Geometric Dimensioning & Tolerancing Professional - Technologist: ASME GDTP Certification provides the means to recognize proficiency in the understanding and application of the geometric dimensioning and tolerancing (GD&T) principles expressed in the ASME Y14.

For more information, see the American Society of Mechanical Engineers International website.

Certified Water Technologist: The Certified Water Technologist (CWT) program represents the highest professional credential in the industrial and commercial water treatment field.

For more information, see the Association of Water Technologies website.

LOCATION INFORMATION: Chandler, Arizona

Chandler, Arizona
Chandler, Arizona photo by Ixnayonthetimmay

Chandler is situated in Maricopa County, Arizona. It has a population of over 247,140, which has grown by 40.0% over the last ten years. The cost of living index in Chandler, 93, is below the national average. New single-family homes in Chandler are priced at $206,800 on average, which is well below the state average. In 2008, three hundred sixty-one new homes were constructed in Chandler, down from 1,002 the previous year.

The three big industries for women in Chandler are educational services, health care, and finance and insurance. For men, it is computer and electronic products, construction, and professional, scientific, and technical services. The average commute to work is about 25 minutes. More than 32.5% of Chandler residents have a bachelor's degree, which is higher than the state average. The percentage of residents with a graduate degree, 10.5%, is higher than the state average.

The unemployment rate in Chandler is 6.6%, which is less than Arizona's average of 9.3%.

The percentage of Chandler residents that are affiliated with a religious congregation, 39.7%, is less than the national average but more than the state average. The most common religious groups are the Catholic Church, the LDS (Mormon) Church and the Southern Baptist Convention.

Chandler is home to the Kyrene Gin and the Goodyear Substation as well as West Mine Well Park and Doctor Chandler Memorial Park. Visitors to Chandler can choose from Courtyard by Marriott - Chandler, Four Seasons Solar Products and Aloha Motel for temporary stays in the area.